| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 3 |  | negsub |  |-  ( ( A e. CC /\ N e. CC ) -> ( A + -u N ) = ( A - N ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( A e. RR /\ N e. ZZ ) -> ( A + -u N ) = ( A - N ) ) | 
						
							| 5 | 4 | eqcomd |  |-  ( ( A e. RR /\ N e. ZZ ) -> ( A - N ) = ( A + -u N ) ) | 
						
							| 6 | 5 | fveq2d |  |-  ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A - N ) ) = ( |_ ` ( A + -u N ) ) ) | 
						
							| 7 |  | znegcl |  |-  ( N e. ZZ -> -u N e. ZZ ) | 
						
							| 8 |  | fladdz |  |-  ( ( A e. RR /\ -u N e. ZZ ) -> ( |_ ` ( A + -u N ) ) = ( ( |_ ` A ) + -u N ) ) | 
						
							| 9 | 7 8 | sylan2 |  |-  ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A + -u N ) ) = ( ( |_ ` A ) + -u N ) ) | 
						
							| 10 |  | reflcl |  |-  ( A e. RR -> ( |_ ` A ) e. RR ) | 
						
							| 11 | 10 | recnd |  |-  ( A e. RR -> ( |_ ` A ) e. CC ) | 
						
							| 12 |  | negsub |  |-  ( ( ( |_ ` A ) e. CC /\ N e. CC ) -> ( ( |_ ` A ) + -u N ) = ( ( |_ ` A ) - N ) ) | 
						
							| 13 | 11 2 12 | syl2an |  |-  ( ( A e. RR /\ N e. ZZ ) -> ( ( |_ ` A ) + -u N ) = ( ( |_ ` A ) - N ) ) | 
						
							| 14 | 6 9 13 | 3eqtrd |  |-  ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A - N ) ) = ( ( |_ ` A ) - N ) ) |