Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
3 |
|
negsub |
|- ( ( A e. CC /\ N e. CC ) -> ( A + -u N ) = ( A - N ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( A e. RR /\ N e. ZZ ) -> ( A + -u N ) = ( A - N ) ) |
5 |
4
|
eqcomd |
|- ( ( A e. RR /\ N e. ZZ ) -> ( A - N ) = ( A + -u N ) ) |
6 |
5
|
fveq2d |
|- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A - N ) ) = ( |_ ` ( A + -u N ) ) ) |
7 |
|
znegcl |
|- ( N e. ZZ -> -u N e. ZZ ) |
8 |
|
fladdz |
|- ( ( A e. RR /\ -u N e. ZZ ) -> ( |_ ` ( A + -u N ) ) = ( ( |_ ` A ) + -u N ) ) |
9 |
7 8
|
sylan2 |
|- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A + -u N ) ) = ( ( |_ ` A ) + -u N ) ) |
10 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
11 |
10
|
recnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
12 |
|
negsub |
|- ( ( ( |_ ` A ) e. CC /\ N e. CC ) -> ( ( |_ ` A ) + -u N ) = ( ( |_ ` A ) - N ) ) |
13 |
11 2 12
|
syl2an |
|- ( ( A e. RR /\ N e. ZZ ) -> ( ( |_ ` A ) + -u N ) = ( ( |_ ` A ) - N ) ) |
14 |
6 9 13
|
3eqtrd |
|- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A - N ) ) = ( ( |_ ` A ) - N ) ) |