| Step |
Hyp |
Ref |
Expression |
| 1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 2 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
| 3 |
|
negsub |
|- ( ( A e. CC /\ N e. CC ) -> ( A + -u N ) = ( A - N ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. RR /\ N e. ZZ ) -> ( A + -u N ) = ( A - N ) ) |
| 5 |
4
|
eqcomd |
|- ( ( A e. RR /\ N e. ZZ ) -> ( A - N ) = ( A + -u N ) ) |
| 6 |
5
|
fveq2d |
|- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A - N ) ) = ( |_ ` ( A + -u N ) ) ) |
| 7 |
|
znegcl |
|- ( N e. ZZ -> -u N e. ZZ ) |
| 8 |
|
fladdz |
|- ( ( A e. RR /\ -u N e. ZZ ) -> ( |_ ` ( A + -u N ) ) = ( ( |_ ` A ) + -u N ) ) |
| 9 |
7 8
|
sylan2 |
|- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A + -u N ) ) = ( ( |_ ` A ) + -u N ) ) |
| 10 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
| 11 |
10
|
recnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
| 12 |
|
negsub |
|- ( ( ( |_ ` A ) e. CC /\ N e. CC ) -> ( ( |_ ` A ) + -u N ) = ( ( |_ ` A ) - N ) ) |
| 13 |
11 2 12
|
syl2an |
|- ( ( A e. RR /\ N e. ZZ ) -> ( ( |_ ` A ) + -u N ) = ( ( |_ ` A ) - N ) ) |
| 14 |
6 9 13
|
3eqtrd |
|- ( ( A e. RR /\ N e. ZZ ) -> ( |_ ` ( A - N ) ) = ( ( |_ ` A ) - N ) ) |