Metamath Proof Explorer


Theorem flsubz

Description: An integer can be moved in and out of the floor of a difference. (Contributed by AV, 29-May-2020)

Ref Expression
Assertion flsubz ANAN=AN

Proof

Step Hyp Ref Expression
1 recn AA
2 zcn NN
3 negsub ANA+- N=AN
4 1 2 3 syl2an ANA+- N=AN
5 4 eqcomd ANAN=A+- N
6 5 fveq2d ANAN=A+- N
7 znegcl NN
8 fladdz ANA+- N=A+- N
9 7 8 sylan2 ANA+- N=A+- N
10 reflcl AA
11 10 recnd AA
12 negsub ANA+- N=AN
13 11 2 12 syl2an ANA+- N=AN
14 6 9 13 3eqtrd ANAN=AN