Step |
Hyp |
Ref |
Expression |
1 |
|
fltmul.s |
|- ( ph -> S e. CC ) |
2 |
|
fltmul.a |
|- ( ph -> A e. CC ) |
3 |
|
fltmul.b |
|- ( ph -> B e. CC ) |
4 |
|
fltmul.c |
|- ( ph -> C e. CC ) |
5 |
|
fltmul.n |
|- ( ph -> N e. NN0 ) |
6 |
|
fltmul.1 |
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) ) |
7 |
1 5
|
expcld |
|- ( ph -> ( S ^ N ) e. CC ) |
8 |
2 5
|
expcld |
|- ( ph -> ( A ^ N ) e. CC ) |
9 |
3 5
|
expcld |
|- ( ph -> ( B ^ N ) e. CC ) |
10 |
7 8 9
|
adddid |
|- ( ph -> ( ( S ^ N ) x. ( ( A ^ N ) + ( B ^ N ) ) ) = ( ( ( S ^ N ) x. ( A ^ N ) ) + ( ( S ^ N ) x. ( B ^ N ) ) ) ) |
11 |
6
|
oveq2d |
|- ( ph -> ( ( S ^ N ) x. ( ( A ^ N ) + ( B ^ N ) ) ) = ( ( S ^ N ) x. ( C ^ N ) ) ) |
12 |
10 11
|
eqtr3d |
|- ( ph -> ( ( ( S ^ N ) x. ( A ^ N ) ) + ( ( S ^ N ) x. ( B ^ N ) ) ) = ( ( S ^ N ) x. ( C ^ N ) ) ) |
13 |
1 2 5
|
mulexpd |
|- ( ph -> ( ( S x. A ) ^ N ) = ( ( S ^ N ) x. ( A ^ N ) ) ) |
14 |
1 3 5
|
mulexpd |
|- ( ph -> ( ( S x. B ) ^ N ) = ( ( S ^ N ) x. ( B ^ N ) ) ) |
15 |
13 14
|
oveq12d |
|- ( ph -> ( ( ( S x. A ) ^ N ) + ( ( S x. B ) ^ N ) ) = ( ( ( S ^ N ) x. ( A ^ N ) ) + ( ( S ^ N ) x. ( B ^ N ) ) ) ) |
16 |
1 4 5
|
mulexpd |
|- ( ph -> ( ( S x. C ) ^ N ) = ( ( S ^ N ) x. ( C ^ N ) ) ) |
17 |
12 15 16
|
3eqtr4d |
|- ( ph -> ( ( ( S x. A ) ^ N ) + ( ( S x. B ) ^ N ) ) = ( ( S x. C ) ^ N ) ) |