Metamath Proof Explorer


Theorem fltmul

Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any N e. NN0 , so the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltmul.s
|- ( ph -> S e. CC )
fltmul.a
|- ( ph -> A e. CC )
fltmul.b
|- ( ph -> B e. CC )
fltmul.c
|- ( ph -> C e. CC )
fltmul.n
|- ( ph -> N e. NN0 )
fltmul.1
|- ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) )
Assertion fltmul
|- ( ph -> ( ( ( S x. A ) ^ N ) + ( ( S x. B ) ^ N ) ) = ( ( S x. C ) ^ N ) )

Proof

Step Hyp Ref Expression
1 fltmul.s
 |-  ( ph -> S e. CC )
2 fltmul.a
 |-  ( ph -> A e. CC )
3 fltmul.b
 |-  ( ph -> B e. CC )
4 fltmul.c
 |-  ( ph -> C e. CC )
5 fltmul.n
 |-  ( ph -> N e. NN0 )
6 fltmul.1
 |-  ( ph -> ( ( A ^ N ) + ( B ^ N ) ) = ( C ^ N ) )
7 1 5 expcld
 |-  ( ph -> ( S ^ N ) e. CC )
8 2 5 expcld
 |-  ( ph -> ( A ^ N ) e. CC )
9 3 5 expcld
 |-  ( ph -> ( B ^ N ) e. CC )
10 7 8 9 adddid
 |-  ( ph -> ( ( S ^ N ) x. ( ( A ^ N ) + ( B ^ N ) ) ) = ( ( ( S ^ N ) x. ( A ^ N ) ) + ( ( S ^ N ) x. ( B ^ N ) ) ) )
11 6 oveq2d
 |-  ( ph -> ( ( S ^ N ) x. ( ( A ^ N ) + ( B ^ N ) ) ) = ( ( S ^ N ) x. ( C ^ N ) ) )
12 10 11 eqtr3d
 |-  ( ph -> ( ( ( S ^ N ) x. ( A ^ N ) ) + ( ( S ^ N ) x. ( B ^ N ) ) ) = ( ( S ^ N ) x. ( C ^ N ) ) )
13 1 2 5 mulexpd
 |-  ( ph -> ( ( S x. A ) ^ N ) = ( ( S ^ N ) x. ( A ^ N ) ) )
14 1 3 5 mulexpd
 |-  ( ph -> ( ( S x. B ) ^ N ) = ( ( S ^ N ) x. ( B ^ N ) ) )
15 13 14 oveq12d
 |-  ( ph -> ( ( ( S x. A ) ^ N ) + ( ( S x. B ) ^ N ) ) = ( ( ( S ^ N ) x. ( A ^ N ) ) + ( ( S ^ N ) x. ( B ^ N ) ) ) )
16 1 4 5 mulexpd
 |-  ( ph -> ( ( S x. C ) ^ N ) = ( ( S ^ N ) x. ( C ^ N ) ) )
17 12 15 16 3eqtr4d
 |-  ( ph -> ( ( ( S x. A ) ^ N ) + ( ( S x. B ) ^ N ) ) = ( ( S x. C ) ^ N ) )