Metamath Proof Explorer


Theorem fltmul

Description: A counterexample to FLT stays valid when scaled. The hypotheses are more general than they need to be for convenience. (There does not seem to be a standard term for Fermat or Pythagorean triples extended to any N e. NN0 , so the label is more about the context in which this theorem is used). (Contributed by SN, 20-Aug-2024)

Ref Expression
Hypotheses fltmul.s φ S
fltmul.a φ A
fltmul.b φ B
fltmul.c φ C
fltmul.n φ N 0
fltmul.1 φ A N + B N = C N
Assertion fltmul φ S A N + S B N = S C N

Proof

Step Hyp Ref Expression
1 fltmul.s φ S
2 fltmul.a φ A
3 fltmul.b φ B
4 fltmul.c φ C
5 fltmul.n φ N 0
6 fltmul.1 φ A N + B N = C N
7 1 5 expcld φ S N
8 2 5 expcld φ A N
9 3 5 expcld φ B N
10 7 8 9 adddid φ S N A N + B N = S N A N + S N B N
11 6 oveq2d φ S N A N + B N = S N C N
12 10 11 eqtr3d φ S N A N + S N B N = S N C N
13 1 2 5 mulexpd φ S A N = S N A N
14 1 3 5 mulexpd φ S B N = S N B N
15 13 14 oveq12d φ S A N + S B N = S N A N + S N B N
16 1 4 5 mulexpd φ S C N = S N C N
17 12 15 16 3eqtr4d φ S A N + S B N = S C N