| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnsnb.1 |  |-  A e. _V | 
						
							| 2 |  | fnsnr |  |-  ( F Fn { A } -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) | 
						
							| 3 |  | df-fn |  |-  ( F Fn { A } <-> ( Fun F /\ dom F = { A } ) ) | 
						
							| 4 | 1 | snid |  |-  A e. { A } | 
						
							| 5 |  | eleq2 |  |-  ( dom F = { A } -> ( A e. dom F <-> A e. { A } ) ) | 
						
							| 6 | 4 5 | mpbiri |  |-  ( dom F = { A } -> A e. dom F ) | 
						
							| 7 | 6 | anim2i |  |-  ( ( Fun F /\ dom F = { A } ) -> ( Fun F /\ A e. dom F ) ) | 
						
							| 8 | 3 7 | sylbi |  |-  ( F Fn { A } -> ( Fun F /\ A e. dom F ) ) | 
						
							| 9 |  | funfvop |  |-  ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) | 
						
							| 10 | 8 9 | syl |  |-  ( F Fn { A } -> <. A , ( F ` A ) >. e. F ) | 
						
							| 11 |  | eleq1 |  |-  ( x = <. A , ( F ` A ) >. -> ( x e. F <-> <. A , ( F ` A ) >. e. F ) ) | 
						
							| 12 | 10 11 | syl5ibrcom |  |-  ( F Fn { A } -> ( x = <. A , ( F ` A ) >. -> x e. F ) ) | 
						
							| 13 | 2 12 | impbid |  |-  ( F Fn { A } -> ( x e. F <-> x = <. A , ( F ` A ) >. ) ) | 
						
							| 14 |  | velsn |  |-  ( x e. { <. A , ( F ` A ) >. } <-> x = <. A , ( F ` A ) >. ) | 
						
							| 15 | 13 14 | bitr4di |  |-  ( F Fn { A } -> ( x e. F <-> x e. { <. A , ( F ` A ) >. } ) ) | 
						
							| 16 | 15 | eqrdv |  |-  ( F Fn { A } -> F = { <. A , ( F ` A ) >. } ) | 
						
							| 17 |  | fvex |  |-  ( F ` A ) e. _V | 
						
							| 18 | 1 17 | fnsn |  |-  { <. A , ( F ` A ) >. } Fn { A } | 
						
							| 19 |  | fneq1 |  |-  ( F = { <. A , ( F ` A ) >. } -> ( F Fn { A } <-> { <. A , ( F ` A ) >. } Fn { A } ) ) | 
						
							| 20 | 18 19 | mpbiri |  |-  ( F = { <. A , ( F ` A ) >. } -> F Fn { A } ) | 
						
							| 21 | 16 20 | impbii |  |-  ( F Fn { A } <-> F = { <. A , ( F ` A ) >. } ) |