| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnsnb.1 |
|- A e. _V |
| 2 |
|
fnsnr |
|- ( F Fn { A } -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) |
| 3 |
|
df-fn |
|- ( F Fn { A } <-> ( Fun F /\ dom F = { A } ) ) |
| 4 |
1
|
snid |
|- A e. { A } |
| 5 |
|
eleq2 |
|- ( dom F = { A } -> ( A e. dom F <-> A e. { A } ) ) |
| 6 |
4 5
|
mpbiri |
|- ( dom F = { A } -> A e. dom F ) |
| 7 |
6
|
anim2i |
|- ( ( Fun F /\ dom F = { A } ) -> ( Fun F /\ A e. dom F ) ) |
| 8 |
3 7
|
sylbi |
|- ( F Fn { A } -> ( Fun F /\ A e. dom F ) ) |
| 9 |
|
funfvop |
|- ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) |
| 10 |
8 9
|
syl |
|- ( F Fn { A } -> <. A , ( F ` A ) >. e. F ) |
| 11 |
|
eleq1 |
|- ( x = <. A , ( F ` A ) >. -> ( x e. F <-> <. A , ( F ` A ) >. e. F ) ) |
| 12 |
10 11
|
syl5ibrcom |
|- ( F Fn { A } -> ( x = <. A , ( F ` A ) >. -> x e. F ) ) |
| 13 |
2 12
|
impbid |
|- ( F Fn { A } -> ( x e. F <-> x = <. A , ( F ` A ) >. ) ) |
| 14 |
|
velsn |
|- ( x e. { <. A , ( F ` A ) >. } <-> x = <. A , ( F ` A ) >. ) |
| 15 |
13 14
|
bitr4di |
|- ( F Fn { A } -> ( x e. F <-> x e. { <. A , ( F ` A ) >. } ) ) |
| 16 |
15
|
eqrdv |
|- ( F Fn { A } -> F = { <. A , ( F ` A ) >. } ) |
| 17 |
|
fvex |
|- ( F ` A ) e. _V |
| 18 |
1 17
|
fnsn |
|- { <. A , ( F ` A ) >. } Fn { A } |
| 19 |
|
fneq1 |
|- ( F = { <. A , ( F ` A ) >. } -> ( F Fn { A } <-> { <. A , ( F ` A ) >. } Fn { A } ) ) |
| 20 |
18 19
|
mpbiri |
|- ( F = { <. A , ( F ` A ) >. } -> F Fn { A } ) |
| 21 |
16 20
|
impbii |
|- ( F Fn { A } <-> F = { <. A , ( F ` A ) >. } ) |