| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnsnb.1 |
⊢ 𝐴 ∈ V |
| 2 |
|
fnsnr |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 ∈ 𝐹 → 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) |
| 3 |
|
df-fn |
⊢ ( 𝐹 Fn { 𝐴 } ↔ ( Fun 𝐹 ∧ dom 𝐹 = { 𝐴 } ) ) |
| 4 |
1
|
snid |
⊢ 𝐴 ∈ { 𝐴 } |
| 5 |
|
eleq2 |
⊢ ( dom 𝐹 = { 𝐴 } → ( 𝐴 ∈ dom 𝐹 ↔ 𝐴 ∈ { 𝐴 } ) ) |
| 6 |
4 5
|
mpbiri |
⊢ ( dom 𝐹 = { 𝐴 } → 𝐴 ∈ dom 𝐹 ) |
| 7 |
6
|
anim2i |
⊢ ( ( Fun 𝐹 ∧ dom 𝐹 = { 𝐴 } ) → ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) |
| 8 |
3 7
|
sylbi |
⊢ ( 𝐹 Fn { 𝐴 } → ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) |
| 9 |
|
funfvop |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) |
| 10 |
8 9
|
syl |
⊢ ( 𝐹 Fn { 𝐴 } → 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) |
| 11 |
|
eleq1 |
⊢ ( 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 → ( 𝑥 ∈ 𝐹 ↔ 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ∈ 𝐹 ) ) |
| 12 |
10 11
|
syl5ibrcom |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 → 𝑥 ∈ 𝐹 ) ) |
| 13 |
2 12
|
impbid |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 ∈ 𝐹 ↔ 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) ) |
| 14 |
|
velsn |
⊢ ( 𝑥 ∈ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ↔ 𝑥 = 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 ) |
| 15 |
13 14
|
bitr4di |
⊢ ( 𝐹 Fn { 𝐴 } → ( 𝑥 ∈ 𝐹 ↔ 𝑥 ∈ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) ) |
| 16 |
15
|
eqrdv |
⊢ ( 𝐹 Fn { 𝐴 } → 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 17 |
|
fvex |
⊢ ( 𝐹 ‘ 𝐴 ) ∈ V |
| 18 |
1 17
|
fnsn |
⊢ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } |
| 19 |
|
fneq1 |
⊢ ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → ( 𝐹 Fn { 𝐴 } ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } Fn { 𝐴 } ) ) |
| 20 |
18 19
|
mpbiri |
⊢ ( 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } → 𝐹 Fn { 𝐴 } ) |
| 21 |
16 20
|
impbii |
⊢ ( 𝐹 Fn { 𝐴 } ↔ 𝐹 = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |