Metamath Proof Explorer


Theorem fnsnb

Description: A function whose domain is a singleton can be represented as a singleton of an ordered pair. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) Revised to add reverse implication. (Revised by NM, 29-Dec-2018)

Ref Expression
Hypothesis fnsnb.1 𝐴 ∈ V
Assertion fnsnb ( 𝐹 Fn { 𝐴 } ↔ 𝐹 = { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } )

Proof

Step Hyp Ref Expression
1 fnsnb.1 𝐴 ∈ V
2 fnsnr ( 𝐹 Fn { 𝐴 } → ( 𝑥𝐹𝑥 = ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ ) )
3 df-fn ( 𝐹 Fn { 𝐴 } ↔ ( Fun 𝐹 ∧ dom 𝐹 = { 𝐴 } ) )
4 1 snid 𝐴 ∈ { 𝐴 }
5 eleq2 ( dom 𝐹 = { 𝐴 } → ( 𝐴 ∈ dom 𝐹𝐴 ∈ { 𝐴 } ) )
6 4 5 mpbiri ( dom 𝐹 = { 𝐴 } → 𝐴 ∈ dom 𝐹 )
7 6 anim2i ( ( Fun 𝐹 ∧ dom 𝐹 = { 𝐴 } ) → ( Fun 𝐹𝐴 ∈ dom 𝐹 ) )
8 3 7 sylbi ( 𝐹 Fn { 𝐴 } → ( Fun 𝐹𝐴 ∈ dom 𝐹 ) )
9 funfvop ( ( Fun 𝐹𝐴 ∈ dom 𝐹 ) → ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ ∈ 𝐹 )
10 8 9 syl ( 𝐹 Fn { 𝐴 } → ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ ∈ 𝐹 )
11 eleq1 ( 𝑥 = ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ → ( 𝑥𝐹 ↔ ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ ∈ 𝐹 ) )
12 10 11 syl5ibrcom ( 𝐹 Fn { 𝐴 } → ( 𝑥 = ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ → 𝑥𝐹 ) )
13 2 12 impbid ( 𝐹 Fn { 𝐴 } → ( 𝑥𝐹𝑥 = ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ ) )
14 velsn ( 𝑥 ∈ { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } ↔ 𝑥 = ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ )
15 13 14 bitr4di ( 𝐹 Fn { 𝐴 } → ( 𝑥𝐹𝑥 ∈ { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } ) )
16 15 eqrdv ( 𝐹 Fn { 𝐴 } → 𝐹 = { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } )
17 fvex ( 𝐹𝐴 ) ∈ V
18 1 17 fnsn { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } Fn { 𝐴 }
19 fneq1 ( 𝐹 = { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } → ( 𝐹 Fn { 𝐴 } ↔ { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } Fn { 𝐴 } ) )
20 18 19 mpbiri ( 𝐹 = { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } → 𝐹 Fn { 𝐴 } )
21 16 20 impbii ( 𝐹 Fn { 𝐴 } ↔ 𝐹 = { ⟨ 𝐴 , ( 𝐹𝐴 ) ⟩ } )