| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnsnr |
|- ( F Fn { A } -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) |
| 2 |
1
|
adantl |
|- ( ( A e. V /\ F Fn { A } ) -> ( x e. F -> x = <. A , ( F ` A ) >. ) ) |
| 3 |
|
fnfun |
|- ( F Fn { A } -> Fun F ) |
| 4 |
|
snidg |
|- ( A e. V -> A e. { A } ) |
| 5 |
4
|
adantr |
|- ( ( A e. V /\ F Fn { A } ) -> A e. { A } ) |
| 6 |
|
fndm |
|- ( F Fn { A } -> dom F = { A } ) |
| 7 |
6
|
adantl |
|- ( ( A e. V /\ F Fn { A } ) -> dom F = { A } ) |
| 8 |
5 7
|
eleqtrrd |
|- ( ( A e. V /\ F Fn { A } ) -> A e. dom F ) |
| 9 |
|
funfvop |
|- ( ( Fun F /\ A e. dom F ) -> <. A , ( F ` A ) >. e. F ) |
| 10 |
3 8 9
|
syl2an2 |
|- ( ( A e. V /\ F Fn { A } ) -> <. A , ( F ` A ) >. e. F ) |
| 11 |
|
eleq1 |
|- ( x = <. A , ( F ` A ) >. -> ( x e. F <-> <. A , ( F ` A ) >. e. F ) ) |
| 12 |
10 11
|
syl5ibrcom |
|- ( ( A e. V /\ F Fn { A } ) -> ( x = <. A , ( F ` A ) >. -> x e. F ) ) |
| 13 |
2 12
|
impbid |
|- ( ( A e. V /\ F Fn { A } ) -> ( x e. F <-> x = <. A , ( F ` A ) >. ) ) |
| 14 |
|
velsn |
|- ( x e. { <. A , ( F ` A ) >. } <-> x = <. A , ( F ` A ) >. ) |
| 15 |
13 14
|
bitr4di |
|- ( ( A e. V /\ F Fn { A } ) -> ( x e. F <-> x e. { <. A , ( F ` A ) >. } ) ) |
| 16 |
15
|
eqrdv |
|- ( ( A e. V /\ F Fn { A } ) -> F = { <. A , ( F ` A ) >. } ) |
| 17 |
16
|
ex |
|- ( A e. V -> ( F Fn { A } -> F = { <. A , ( F ` A ) >. } ) ) |
| 18 |
|
fvex |
|- ( F ` A ) e. _V |
| 19 |
|
fnsng |
|- ( ( A e. V /\ ( F ` A ) e. _V ) -> { <. A , ( F ` A ) >. } Fn { A } ) |
| 20 |
18 19
|
mpan2 |
|- ( A e. V -> { <. A , ( F ` A ) >. } Fn { A } ) |
| 21 |
|
fneq1 |
|- ( F = { <. A , ( F ` A ) >. } -> ( F Fn { A } <-> { <. A , ( F ` A ) >. } Fn { A } ) ) |
| 22 |
20 21
|
syl5ibrcom |
|- ( A e. V -> ( F = { <. A , ( F ` A ) >. } -> F Fn { A } ) ) |
| 23 |
17 22
|
impbid |
|- ( A e. V -> ( F Fn { A } <-> F = { <. A , ( F ` A ) >. } ) ) |