| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnunop.x |
|- ( ph -> X e. V ) |
| 2 |
|
fnunop.y |
|- ( ph -> Y e. W ) |
| 3 |
|
fnunop.f |
|- ( ph -> F Fn D ) |
| 4 |
|
fnunop.g |
|- G = ( F u. { <. X , Y >. } ) |
| 5 |
|
fnunop.e |
|- E = ( D u. { X } ) |
| 6 |
|
fnunop.d |
|- ( ph -> -. X e. D ) |
| 7 |
|
fnsng |
|- ( ( X e. V /\ Y e. W ) -> { <. X , Y >. } Fn { X } ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> { <. X , Y >. } Fn { X } ) |
| 9 |
|
disjsn |
|- ( ( D i^i { X } ) = (/) <-> -. X e. D ) |
| 10 |
6 9
|
sylibr |
|- ( ph -> ( D i^i { X } ) = (/) ) |
| 11 |
3 8 10
|
fnund |
|- ( ph -> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
| 12 |
4
|
fneq1i |
|- ( G Fn E <-> ( F u. { <. X , Y >. } ) Fn E ) |
| 13 |
5
|
fneq2i |
|- ( ( F u. { <. X , Y >. } ) Fn E <-> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
| 14 |
12 13
|
bitri |
|- ( G Fn E <-> ( F u. { <. X , Y >. } ) Fn ( D u. { X } ) ) |
| 15 |
11 14
|
sylibr |
|- ( ph -> G Fn E ) |