Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
|- ( F u. G ) = ( G u. F ) |
2 |
1
|
reseq1i |
|- ( ( F u. G ) |` B ) = ( ( G u. F ) |` B ) |
3 |
|
ineqcom |
|- ( ( A i^i B ) = (/) <-> ( B i^i A ) = (/) ) |
4 |
|
fnunres1 |
|- ( ( G Fn B /\ F Fn A /\ ( B i^i A ) = (/) ) -> ( ( G u. F ) |` B ) = G ) |
5 |
3 4
|
syl3an3b |
|- ( ( G Fn B /\ F Fn A /\ ( A i^i B ) = (/) ) -> ( ( G u. F ) |` B ) = G ) |
6 |
5
|
3com12 |
|- ( ( F Fn A /\ G Fn B /\ ( A i^i B ) = (/) ) -> ( ( G u. F ) |` B ) = G ) |
7 |
2 6
|
eqtrid |
|- ( ( F Fn A /\ G Fn B /\ ( A i^i B ) = (/) ) -> ( ( F u. G ) |` B ) = G ) |