Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem5.1 |
|- S = ( x e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( X + ( 1 / 2 ) ) x. x ) ) ) |
2 |
|
simpl |
|- ( ( X e. RR /\ x e. ( -u _pi [,] _pi ) ) -> X e. RR ) |
3 |
|
1red |
|- ( ( X e. RR /\ x e. ( -u _pi [,] _pi ) ) -> 1 e. RR ) |
4 |
3
|
rehalfcld |
|- ( ( X e. RR /\ x e. ( -u _pi [,] _pi ) ) -> ( 1 / 2 ) e. RR ) |
5 |
2 4
|
readdcld |
|- ( ( X e. RR /\ x e. ( -u _pi [,] _pi ) ) -> ( X + ( 1 / 2 ) ) e. RR ) |
6 |
|
pire |
|- _pi e. RR |
7 |
6
|
renegcli |
|- -u _pi e. RR |
8 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
9 |
7 6 8
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
10 |
9
|
sseli |
|- ( x e. ( -u _pi [,] _pi ) -> x e. RR ) |
11 |
10
|
adantl |
|- ( ( X e. RR /\ x e. ( -u _pi [,] _pi ) ) -> x e. RR ) |
12 |
5 11
|
remulcld |
|- ( ( X e. RR /\ x e. ( -u _pi [,] _pi ) ) -> ( ( X + ( 1 / 2 ) ) x. x ) e. RR ) |
13 |
12
|
resincld |
|- ( ( X e. RR /\ x e. ( -u _pi [,] _pi ) ) -> ( sin ` ( ( X + ( 1 / 2 ) ) x. x ) ) e. RR ) |
14 |
13 1
|
fmptd |
|- ( X e. RR -> S : ( -u _pi [,] _pi ) --> RR ) |