Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem5.1 |
⊢ 𝑆 = ( 𝑥 ∈ ( - π [,] π ) ↦ ( sin ‘ ( ( 𝑋 + ( 1 / 2 ) ) · 𝑥 ) ) ) |
2 |
|
simpl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑋 ∈ ℝ ) |
3 |
|
1red |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑥 ∈ ( - π [,] π ) ) → 1 ∈ ℝ ) |
4 |
3
|
rehalfcld |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 1 / 2 ) ∈ ℝ ) |
5 |
2 4
|
readdcld |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑥 ∈ ( - π [,] π ) ) → ( 𝑋 + ( 1 / 2 ) ) ∈ ℝ ) |
6 |
|
pire |
⊢ π ∈ ℝ |
7 |
6
|
renegcli |
⊢ - π ∈ ℝ |
8 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ π ∈ ℝ ) → ( - π [,] π ) ⊆ ℝ ) |
9 |
7 6 8
|
mp2an |
⊢ ( - π [,] π ) ⊆ ℝ |
10 |
9
|
sseli |
⊢ ( 𝑥 ∈ ( - π [,] π ) → 𝑥 ∈ ℝ ) |
11 |
10
|
adantl |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑥 ∈ ( - π [,] π ) ) → 𝑥 ∈ ℝ ) |
12 |
5 11
|
remulcld |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑥 ∈ ( - π [,] π ) ) → ( ( 𝑋 + ( 1 / 2 ) ) · 𝑥 ) ∈ ℝ ) |
13 |
12
|
resincld |
⊢ ( ( 𝑋 ∈ ℝ ∧ 𝑥 ∈ ( - π [,] π ) ) → ( sin ‘ ( ( 𝑋 + ( 1 / 2 ) ) · 𝑥 ) ) ∈ ℝ ) |
14 |
13 1
|
fmptd |
⊢ ( 𝑋 ∈ ℝ → 𝑆 : ( - π [,] π ) ⟶ ℝ ) |