| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem8.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
fourierdlem8.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
fourierdlem8.q |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 4 |
|
fourierdlem8.i |
|- ( ph -> I e. ( 0 ..^ M ) ) |
| 5 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) -> A e. RR* ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) -> B e. RR* ) |
| 7 |
3
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 8 |
4
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) -> I e. ( 0 ..^ M ) ) |
| 9 |
|
simpr |
|- ( ( ph /\ x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) -> x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) |
| 10 |
5 6 7 8 9
|
fourierdlem1 |
|- ( ( ph /\ x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
| 11 |
10
|
ralrimiva |
|- ( ph -> A. x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) x e. ( A [,] B ) ) |
| 12 |
|
dfss3 |
|- ( ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) C_ ( A [,] B ) <-> A. x e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) x e. ( A [,] B ) ) |
| 13 |
11 12
|
sylibr |
|- ( ph -> ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) C_ ( A [,] B ) ) |