| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem1.a |
|- ( ph -> A e. RR* ) |
| 2 |
|
fourierdlem1.b |
|- ( ph -> B e. RR* ) |
| 3 |
|
fourierdlem1.q |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
| 4 |
|
fourierdlem1.i |
|- ( ph -> I e. ( 0 ..^ M ) ) |
| 5 |
|
fourierdlem1.x |
|- ( ph -> X e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) |
| 6 |
|
iccssxr |
|- ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) C_ RR* |
| 7 |
6 5
|
sselid |
|- ( ph -> X e. RR* ) |
| 8 |
|
iccssxr |
|- ( A [,] B ) C_ RR* |
| 9 |
|
elfzofz |
|- ( I e. ( 0 ..^ M ) -> I e. ( 0 ... M ) ) |
| 10 |
4 9
|
syl |
|- ( ph -> I e. ( 0 ... M ) ) |
| 11 |
3 10
|
ffvelcdmd |
|- ( ph -> ( Q ` I ) e. ( A [,] B ) ) |
| 12 |
8 11
|
sselid |
|- ( ph -> ( Q ` I ) e. RR* ) |
| 13 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` I ) e. ( A [,] B ) ) -> A <_ ( Q ` I ) ) |
| 14 |
1 2 11 13
|
syl3anc |
|- ( ph -> A <_ ( Q ` I ) ) |
| 15 |
|
fzofzp1 |
|- ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) ) |
| 16 |
4 15
|
syl |
|- ( ph -> ( I + 1 ) e. ( 0 ... M ) ) |
| 17 |
3 16
|
ffvelcdmd |
|- ( ph -> ( Q ` ( I + 1 ) ) e. ( A [,] B ) ) |
| 18 |
8 17
|
sselid |
|- ( ph -> ( Q ` ( I + 1 ) ) e. RR* ) |
| 19 |
|
elicc4 |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ X e. RR* ) -> ( X e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) <-> ( ( Q ` I ) <_ X /\ X <_ ( Q ` ( I + 1 ) ) ) ) ) |
| 20 |
12 18 7 19
|
syl3anc |
|- ( ph -> ( X e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) <-> ( ( Q ` I ) <_ X /\ X <_ ( Q ` ( I + 1 ) ) ) ) ) |
| 21 |
5 20
|
mpbid |
|- ( ph -> ( ( Q ` I ) <_ X /\ X <_ ( Q ` ( I + 1 ) ) ) ) |
| 22 |
21
|
simpld |
|- ( ph -> ( Q ` I ) <_ X ) |
| 23 |
1 12 7 14 22
|
xrletrd |
|- ( ph -> A <_ X ) |
| 24 |
|
iccleub |
|- ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ X e. ( ( Q ` I ) [,] ( Q ` ( I + 1 ) ) ) ) -> X <_ ( Q ` ( I + 1 ) ) ) |
| 25 |
12 18 5 24
|
syl3anc |
|- ( ph -> X <_ ( Q ` ( I + 1 ) ) ) |
| 26 |
|
elicc4 |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* ) -> ( ( Q ` ( I + 1 ) ) e. ( A [,] B ) <-> ( A <_ ( Q ` ( I + 1 ) ) /\ ( Q ` ( I + 1 ) ) <_ B ) ) ) |
| 27 |
1 2 18 26
|
syl3anc |
|- ( ph -> ( ( Q ` ( I + 1 ) ) e. ( A [,] B ) <-> ( A <_ ( Q ` ( I + 1 ) ) /\ ( Q ` ( I + 1 ) ) <_ B ) ) ) |
| 28 |
17 27
|
mpbid |
|- ( ph -> ( A <_ ( Q ` ( I + 1 ) ) /\ ( Q ` ( I + 1 ) ) <_ B ) ) |
| 29 |
28
|
simprd |
|- ( ph -> ( Q ` ( I + 1 ) ) <_ B ) |
| 30 |
7 18 2 25 29
|
xrletrd |
|- ( ph -> X <_ B ) |
| 31 |
|
elicc1 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( X e. ( A [,] B ) <-> ( X e. RR* /\ A <_ X /\ X <_ B ) ) ) |
| 32 |
1 2 31
|
syl2anc |
|- ( ph -> ( X e. ( A [,] B ) <-> ( X e. RR* /\ A <_ X /\ X <_ B ) ) ) |
| 33 |
7 23 30 32
|
mpbir3and |
|- ( ph -> X e. ( A [,] B ) ) |