| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem8.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
| 2 |
|
fourierdlem8.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
| 3 |
|
fourierdlem8.q |
⊢ ( 𝜑 → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 4 |
|
fourierdlem8.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 0 ..^ 𝑀 ) ) |
| 5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐴 ∈ ℝ* ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐵 ∈ ℝ* ) |
| 7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑄 : ( 0 ... 𝑀 ) ⟶ ( 𝐴 [,] 𝐵 ) ) |
| 8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝐼 ∈ ( 0 ..^ 𝑀 ) ) |
| 9 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) |
| 10 |
5 6 7 8 9
|
fourierdlem1 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ) → 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 11 |
10
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 12 |
|
dfss3 |
⊢ ( ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ↔ ∀ 𝑥 ∈ ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) 𝑥 ∈ ( 𝐴 [,] 𝐵 ) ) |
| 13 |
11 12
|
sylibr |
⊢ ( 𝜑 → ( ( 𝑄 ‘ 𝐼 ) [,] ( 𝑄 ‘ ( 𝐼 + 1 ) ) ) ⊆ ( 𝐴 [,] 𝐵 ) ) |