Metamath Proof Explorer


Theorem fpr2

Description: Law of well-founded recursion over a partial order, part two. Now we establish the value of F within A . (Contributed by Scott Fenton, 11-Sep-2023) (Proof shortened by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis fprr.1
|- F = frecs ( R , A , G )
Assertion fpr2
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) )

Proof

Step Hyp Ref Expression
1 fprr.1
 |-  F = frecs ( R , A , G )
2 1 fpr1
 |-  ( ( R Fr A /\ R Po A /\ R Se A ) -> F Fn A )
3 2 fndmd
 |-  ( ( R Fr A /\ R Po A /\ R Se A ) -> dom F = A )
4 3 eleq2d
 |-  ( ( R Fr A /\ R Po A /\ R Se A ) -> ( X e. dom F <-> X e. A ) )
5 4 biimpar
 |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. A ) -> X e. dom F )
6 1 fpr2a
 |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) )
7 5 6 syldan
 |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( X G ( F |` Pred ( R , A , X ) ) ) )