Step |
Hyp |
Ref |
Expression |
1 |
|
fprr.1 |
|- F = frecs ( R , A , G ) |
2 |
|
simpl |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> ( R Fr A /\ R Po A /\ R Se A ) ) |
3 |
1
|
fpr1 |
|- ( ( R Fr A /\ R Po A /\ R Se A ) -> F Fn A ) |
4 |
1
|
fpr2 |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) |
5 |
4
|
ralrimiva |
|- ( ( R Fr A /\ R Po A /\ R Se A ) -> A. z e. A ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) |
6 |
3 5
|
jca |
|- ( ( R Fr A /\ R Po A /\ R Se A ) -> ( F Fn A /\ A. z e. A ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) ) |
7 |
6
|
adantr |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> ( F Fn A /\ A. z e. A ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) ) |
8 |
|
simpr |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) |
9 |
|
fpr3g |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( F Fn A /\ A. z e. A ( F ` z ) = ( z G ( F |` Pred ( R , A , z ) ) ) ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) |
10 |
2 7 8 9
|
syl3anc |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( H Fn A /\ A. z e. A ( H ` z ) = ( z G ( H |` Pred ( R , A , z ) ) ) ) ) -> F = H ) |