Step |
Hyp |
Ref |
Expression |
1 |
|
fprr.1 |
|- F = frecs ( R , A , G ) |
2 |
|
eqid |
|- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
3 |
2
|
frrlem1 |
|- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } = { a | E. b ( a Fn b /\ ( b C_ A /\ A. c e. b Pred ( R , A , c ) C_ b ) /\ A. c e. b ( a ` c ) = ( c G ( a |` Pred ( R , A , c ) ) ) ) } |
4 |
3 1
|
fprlem1 |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( g e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } /\ h e. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } ) ) -> ( ( b g u /\ b h v ) -> u = v ) ) |
5 |
3 1 4
|
frrlem9 |
|- ( ( R Fr A /\ R Po A /\ R Se A ) -> Fun F ) |
6 |
|
eqid |
|- ( ( F |` Pred ( R , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( ( F |` Pred ( R , A , z ) ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
7 |
|
simp1 |
|- ( ( R Fr A /\ R Po A /\ R Se A ) -> R Fr A ) |
8 |
|
ssidd |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) C_ Pred ( R , A , z ) ) |
9 |
|
fprlem2 |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> A. y e. Pred ( R , A , z ) Pred ( R , A , y ) C_ Pred ( R , A , z ) ) |
10 |
|
setlikespec |
|- ( ( z e. A /\ R Se A ) -> Pred ( R , A , z ) e. _V ) |
11 |
10
|
ancoms |
|- ( ( R Se A /\ z e. A ) -> Pred ( R , A , z ) e. _V ) |
12 |
11
|
3ad2antl3 |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) e. _V ) |
13 |
|
predss |
|- Pred ( R , A , z ) C_ A |
14 |
13
|
a1i |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ z e. A ) -> Pred ( R , A , z ) C_ A ) |
15 |
|
difssd |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> ( A \ dom F ) C_ A ) |
16 |
|
simpr |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> ( A \ dom F ) =/= (/) ) |
17 |
15 16
|
jca |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> ( ( A \ dom F ) C_ A /\ ( A \ dom F ) =/= (/) ) ) |
18 |
|
frpomin2 |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( ( A \ dom F ) C_ A /\ ( A \ dom F ) =/= (/) ) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
19 |
17 18
|
syldan |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
20 |
3 1 4 6 7 8 9 12 14 19
|
frrlem14 |
|- ( ( R Fr A /\ R Po A /\ R Se A ) -> dom F = A ) |
21 |
|
df-fn |
|- ( F Fn A <-> ( Fun F /\ dom F = A ) ) |
22 |
5 20 21
|
sylanbrc |
|- ( ( R Fr A /\ R Po A /\ R Se A ) -> F Fn A ) |