Step |
Hyp |
Ref |
Expression |
1 |
|
frrlem11.1 |
|- B = { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( y G ( f |` Pred ( R , A , y ) ) ) ) } |
2 |
|
frrlem11.2 |
|- F = frecs ( R , A , G ) |
3 |
|
frrlem11.3 |
|- ( ( ph /\ ( g e. B /\ h e. B ) ) -> ( ( x g u /\ x h v ) -> u = v ) ) |
4 |
|
frrlem11.4 |
|- C = ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
5 |
|
frrlem12.5 |
|- ( ph -> R Fr A ) |
6 |
|
frrlem12.6 |
|- ( ( ph /\ z e. A ) -> Pred ( R , A , z ) C_ S ) |
7 |
|
frrlem12.7 |
|- ( ( ph /\ z e. A ) -> A. w e. S Pred ( R , A , w ) C_ S ) |
8 |
|
frrlem13.8 |
|- ( ( ph /\ z e. A ) -> S e. _V ) |
9 |
|
frrlem13.9 |
|- ( ( ph /\ z e. A ) -> S C_ A ) |
10 |
|
frrlem14.10 |
|- ( ( ph /\ ( A \ dom F ) =/= (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
11 |
1 2
|
frrlem7 |
|- dom F C_ A |
12 |
11
|
a1i |
|- ( ph -> dom F C_ A ) |
13 |
|
eldifn |
|- ( z e. ( A \ dom F ) -> -. z e. dom F ) |
14 |
13
|
adantl |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> -. z e. dom F ) |
15 |
1 2 3 4 5 6 7 8 9
|
frrlem13 |
|- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C e. B ) |
16 |
|
elssuni |
|- ( C e. B -> C C_ U. B ) |
17 |
15 16
|
syl |
|- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C C_ U. B ) |
18 |
1 2
|
frrlem5 |
|- F = U. B |
19 |
17 18
|
sseqtrrdi |
|- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> C C_ F ) |
20 |
|
dmss |
|- ( C C_ F -> dom C C_ dom F ) |
21 |
19 20
|
syl |
|- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> dom C C_ dom F ) |
22 |
|
ssun2 |
|- { z } C_ ( dom ( F |` S ) u. { z } ) |
23 |
|
vsnid |
|- z e. { z } |
24 |
22 23
|
sselii |
|- z e. ( dom ( F |` S ) u. { z } ) |
25 |
4
|
dmeqi |
|- dom C = dom ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
26 |
|
dmun |
|- dom ( ( F |` S ) u. { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom ( F |` S ) u. dom { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) |
27 |
|
ovex |
|- ( z G ( F |` Pred ( R , A , z ) ) ) e. _V |
28 |
27
|
dmsnop |
|- dom { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } = { z } |
29 |
28
|
uneq2i |
|- ( dom ( F |` S ) u. dom { <. z , ( z G ( F |` Pred ( R , A , z ) ) ) >. } ) = ( dom ( F |` S ) u. { z } ) |
30 |
25 26 29
|
3eqtri |
|- dom C = ( dom ( F |` S ) u. { z } ) |
31 |
24 30
|
eleqtrri |
|- z e. dom C |
32 |
31
|
a1i |
|- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> z e. dom C ) |
33 |
21 32
|
sseldd |
|- ( ( ph /\ ( z e. ( A \ dom F ) /\ Pred ( R , ( A \ dom F ) , z ) = (/) ) ) -> z e. dom F ) |
34 |
33
|
expr |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> ( Pred ( R , ( A \ dom F ) , z ) = (/) -> z e. dom F ) ) |
35 |
14 34
|
mtod |
|- ( ( ph /\ z e. ( A \ dom F ) ) -> -. Pred ( R , ( A \ dom F ) , z ) = (/) ) |
36 |
35
|
nrexdv |
|- ( ph -> -. E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
37 |
|
df-ne |
|- ( ( A \ dom F ) =/= (/) <-> -. ( A \ dom F ) = (/) ) |
38 |
37 10
|
sylan2br |
|- ( ( ph /\ -. ( A \ dom F ) = (/) ) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) |
39 |
38
|
ex |
|- ( ph -> ( -. ( A \ dom F ) = (/) -> E. z e. ( A \ dom F ) Pred ( R , ( A \ dom F ) , z ) = (/) ) ) |
40 |
36 39
|
mt3d |
|- ( ph -> ( A \ dom F ) = (/) ) |
41 |
|
ssdif0 |
|- ( A C_ dom F <-> ( A \ dom F ) = (/) ) |
42 |
40 41
|
sylibr |
|- ( ph -> A C_ dom F ) |
43 |
12 42
|
eqssd |
|- ( ph -> dom F = A ) |