Metamath Proof Explorer


Theorem fr0

Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993)

Ref Expression
Assertion fr0
|- R Fr (/)

Proof

Step Hyp Ref Expression
1 dffr2
 |-  ( R Fr (/) <-> A. x ( ( x C_ (/) /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) )
2 ss0
 |-  ( x C_ (/) -> x = (/) )
3 2 a1d
 |-  ( x C_ (/) -> ( -. E. y e. x { z e. x | z R y } = (/) -> x = (/) ) )
4 3 necon1ad
 |-  ( x C_ (/) -> ( x =/= (/) -> E. y e. x { z e. x | z R y } = (/) ) )
5 4 imp
 |-  ( ( x C_ (/) /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) )
6 1 5 mpgbir
 |-  R Fr (/)