Metamath Proof Explorer


Theorem frege66b

Description: Swap antecedents of frege65b . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)

Ref Expression
Assertion frege66b
|- ( A. x ( ph -> ps ) -> ( A. x ( ch -> ph ) -> ( [ y / x ] ch -> [ y / x ] ps ) ) )

Proof

Step Hyp Ref Expression
1 frege65b
 |-  ( A. x ( ch -> ph ) -> ( A. x ( ph -> ps ) -> ( [ y / x ] ch -> [ y / x ] ps ) ) )
2 ax-frege8
 |-  ( ( A. x ( ch -> ph ) -> ( A. x ( ph -> ps ) -> ( [ y / x ] ch -> [ y / x ] ps ) ) ) -> ( A. x ( ph -> ps ) -> ( A. x ( ch -> ph ) -> ( [ y / x ] ch -> [ y / x ] ps ) ) ) )
3 1 2 ax-mp
 |-  ( A. x ( ph -> ps ) -> ( A. x ( ch -> ph ) -> ( [ y / x ] ch -> [ y / x ] ps ) ) )