Description: Swap antecedents of frege65b . Proposition 66 of Frege1879 p. 54. (Contributed by RP, 24-Dec-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | frege66b | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜒 → 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜒 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege65b | ⊢ ( ∀ 𝑥 ( 𝜒 → 𝜑 ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜒 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) | |
2 | ax-frege8 | ⊢ ( ( ∀ 𝑥 ( 𝜒 → 𝜑 ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( [ 𝑦 / 𝑥 ] 𝜒 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) → ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜒 → 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜒 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) ) | |
3 | 1 2 | ax-mp | ⊢ ( ∀ 𝑥 ( 𝜑 → 𝜓 ) → ( ∀ 𝑥 ( 𝜒 → 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝜒 → [ 𝑦 / 𝑥 ] 𝜓 ) ) ) |