| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrwopreg.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | frgrwopreg.a |  |-  A = { x e. V | ( D ` x ) = K } | 
						
							| 4 |  | frgrwopreg.b |  |-  B = ( V \ A ) | 
						
							| 5 |  | fveqeq2 |  |-  ( x = Y -> ( ( D ` x ) = K <-> ( D ` Y ) = K ) ) | 
						
							| 6 | 5 | notbid |  |-  ( x = Y -> ( -. ( D ` x ) = K <-> -. ( D ` Y ) = K ) ) | 
						
							| 7 | 3 | difeq2i |  |-  ( V \ A ) = ( V \ { x e. V | ( D ` x ) = K } ) | 
						
							| 8 |  | notrab |  |-  ( V \ { x e. V | ( D ` x ) = K } ) = { x e. V | -. ( D ` x ) = K } | 
						
							| 9 | 4 7 8 | 3eqtri |  |-  B = { x e. V | -. ( D ` x ) = K } | 
						
							| 10 | 6 9 | elrab2 |  |-  ( Y e. B <-> ( Y e. V /\ -. ( D ` Y ) = K ) ) | 
						
							| 11 |  | fveqeq2 |  |-  ( x = X -> ( ( D ` x ) = K <-> ( D ` X ) = K ) ) | 
						
							| 12 | 11 3 | elrab2 |  |-  ( X e. A <-> ( X e. V /\ ( D ` X ) = K ) ) | 
						
							| 13 |  | eqeq2 |  |-  ( ( D ` X ) = K -> ( ( D ` Y ) = ( D ` X ) <-> ( D ` Y ) = K ) ) | 
						
							| 14 | 13 | notbid |  |-  ( ( D ` X ) = K -> ( -. ( D ` Y ) = ( D ` X ) <-> -. ( D ` Y ) = K ) ) | 
						
							| 15 |  | neqne |  |-  ( -. ( D ` Y ) = ( D ` X ) -> ( D ` Y ) =/= ( D ` X ) ) | 
						
							| 16 | 15 | necomd |  |-  ( -. ( D ` Y ) = ( D ` X ) -> ( D ` X ) =/= ( D ` Y ) ) | 
						
							| 17 | 14 16 | biimtrrdi |  |-  ( ( D ` X ) = K -> ( -. ( D ` Y ) = K -> ( D ` X ) =/= ( D ` Y ) ) ) | 
						
							| 18 | 12 17 | simplbiim |  |-  ( X e. A -> ( -. ( D ` Y ) = K -> ( D ` X ) =/= ( D ` Y ) ) ) | 
						
							| 19 | 18 | com12 |  |-  ( -. ( D ` Y ) = K -> ( X e. A -> ( D ` X ) =/= ( D ` Y ) ) ) | 
						
							| 20 | 10 19 | simplbiim |  |-  ( Y e. B -> ( X e. A -> ( D ` X ) =/= ( D ` Y ) ) ) | 
						
							| 21 | 20 | impcom |  |-  ( ( X e. A /\ Y e. B ) -> ( D ` X ) =/= ( D ` Y ) ) |