| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrwopreg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreg.a | ⊢ 𝐴  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 4 |  | frgrwopreg.b | ⊢ 𝐵  =  ( 𝑉  ∖  𝐴 ) | 
						
							| 5 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑌  →  ( ( 𝐷 ‘ 𝑥 )  =  𝐾  ↔  ( 𝐷 ‘ 𝑌 )  =  𝐾 ) ) | 
						
							| 6 | 5 | notbid | ⊢ ( 𝑥  =  𝑌  →  ( ¬  ( 𝐷 ‘ 𝑥 )  =  𝐾  ↔  ¬  ( 𝐷 ‘ 𝑌 )  =  𝐾 ) ) | 
						
							| 7 | 3 | difeq2i | ⊢ ( 𝑉  ∖  𝐴 )  =  ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) | 
						
							| 8 |  | notrab | ⊢ ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  { 𝑥  ∈  𝑉  ∣  ¬  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 9 | 4 7 8 | 3eqtri | ⊢ 𝐵  =  { 𝑥  ∈  𝑉  ∣  ¬  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 10 | 6 9 | elrab2 | ⊢ ( 𝑌  ∈  𝐵  ↔  ( 𝑌  ∈  𝑉  ∧  ¬  ( 𝐷 ‘ 𝑌 )  =  𝐾 ) ) | 
						
							| 11 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐷 ‘ 𝑥 )  =  𝐾  ↔  ( 𝐷 ‘ 𝑋 )  =  𝐾 ) ) | 
						
							| 12 | 11 3 | elrab2 | ⊢ ( 𝑋  ∈  𝐴  ↔  ( 𝑋  ∈  𝑉  ∧  ( 𝐷 ‘ 𝑋 )  =  𝐾 ) ) | 
						
							| 13 |  | eqeq2 | ⊢ ( ( 𝐷 ‘ 𝑋 )  =  𝐾  →  ( ( 𝐷 ‘ 𝑌 )  =  ( 𝐷 ‘ 𝑋 )  ↔  ( 𝐷 ‘ 𝑌 )  =  𝐾 ) ) | 
						
							| 14 | 13 | notbid | ⊢ ( ( 𝐷 ‘ 𝑋 )  =  𝐾  →  ( ¬  ( 𝐷 ‘ 𝑌 )  =  ( 𝐷 ‘ 𝑋 )  ↔  ¬  ( 𝐷 ‘ 𝑌 )  =  𝐾 ) ) | 
						
							| 15 |  | neqne | ⊢ ( ¬  ( 𝐷 ‘ 𝑌 )  =  ( 𝐷 ‘ 𝑋 )  →  ( 𝐷 ‘ 𝑌 )  ≠  ( 𝐷 ‘ 𝑋 ) ) | 
						
							| 16 | 15 | necomd | ⊢ ( ¬  ( 𝐷 ‘ 𝑌 )  =  ( 𝐷 ‘ 𝑋 )  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) | 
						
							| 17 | 14 16 | biimtrrdi | ⊢ ( ( 𝐷 ‘ 𝑋 )  =  𝐾  →  ( ¬  ( 𝐷 ‘ 𝑌 )  =  𝐾  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) ) | 
						
							| 18 | 12 17 | simplbiim | ⊢ ( 𝑋  ∈  𝐴  →  ( ¬  ( 𝐷 ‘ 𝑌 )  =  𝐾  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( ¬  ( 𝐷 ‘ 𝑌 )  =  𝐾  →  ( 𝑋  ∈  𝐴  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) ) | 
						
							| 20 | 10 19 | simplbiim | ⊢ ( 𝑌  ∈  𝐵  →  ( 𝑋  ∈  𝐴  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) ) | 
						
							| 21 | 20 | impcom | ⊢ ( ( 𝑋  ∈  𝐴  ∧  𝑌  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) ) |