Metamath Proof Explorer


Theorem frgrwopreglem3

Description: Lemma 3 for frgrwopreg . The vertices in the sets A and B have different degrees. (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 2-Jan-2022)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
Assertion frgrwopreglem3 ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 fveqeq2 ( 𝑥 = 𝑌 → ( ( 𝐷𝑥 ) = 𝐾 ↔ ( 𝐷𝑌 ) = 𝐾 ) )
6 5 notbid ( 𝑥 = 𝑌 → ( ¬ ( 𝐷𝑥 ) = 𝐾 ↔ ¬ ( 𝐷𝑌 ) = 𝐾 ) )
7 3 difeq2i ( 𝑉𝐴 ) = ( 𝑉 ∖ { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 } )
8 notrab ( 𝑉 ∖ { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 } ) = { 𝑥𝑉 ∣ ¬ ( 𝐷𝑥 ) = 𝐾 }
9 4 7 8 3eqtri 𝐵 = { 𝑥𝑉 ∣ ¬ ( 𝐷𝑥 ) = 𝐾 }
10 6 9 elrab2 ( 𝑌𝐵 ↔ ( 𝑌𝑉 ∧ ¬ ( 𝐷𝑌 ) = 𝐾 ) )
11 fveqeq2 ( 𝑥 = 𝑋 → ( ( 𝐷𝑥 ) = 𝐾 ↔ ( 𝐷𝑋 ) = 𝐾 ) )
12 11 3 elrab2 ( 𝑋𝐴 ↔ ( 𝑋𝑉 ∧ ( 𝐷𝑋 ) = 𝐾 ) )
13 eqeq2 ( ( 𝐷𝑋 ) = 𝐾 → ( ( 𝐷𝑌 ) = ( 𝐷𝑋 ) ↔ ( 𝐷𝑌 ) = 𝐾 ) )
14 13 notbid ( ( 𝐷𝑋 ) = 𝐾 → ( ¬ ( 𝐷𝑌 ) = ( 𝐷𝑋 ) ↔ ¬ ( 𝐷𝑌 ) = 𝐾 ) )
15 neqne ( ¬ ( 𝐷𝑌 ) = ( 𝐷𝑋 ) → ( 𝐷𝑌 ) ≠ ( 𝐷𝑋 ) )
16 15 necomd ( ¬ ( 𝐷𝑌 ) = ( 𝐷𝑋 ) → ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) )
17 14 16 syl6bir ( ( 𝐷𝑋 ) = 𝐾 → ( ¬ ( 𝐷𝑌 ) = 𝐾 → ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) )
18 12 17 simplbiim ( 𝑋𝐴 → ( ¬ ( 𝐷𝑌 ) = 𝐾 → ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) )
19 18 com12 ( ¬ ( 𝐷𝑌 ) = 𝐾 → ( 𝑋𝐴 → ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) )
20 10 19 simplbiim ( 𝑌𝐵 → ( 𝑋𝐴 → ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) ) )
21 20 impcom ( ( 𝑋𝐴𝑌𝐵 ) → ( 𝐷𝑋 ) ≠ ( 𝐷𝑌 ) )