Step |
Hyp |
Ref |
Expression |
1 |
|
frgrwopreg.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
frgrwopreg.d |
⊢ 𝐷 = ( VtxDeg ‘ 𝐺 ) |
3 |
|
frgrwopreg.a |
⊢ 𝐴 = { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } |
4 |
|
frgrwopreg.b |
⊢ 𝐵 = ( 𝑉 ∖ 𝐴 ) |
5 |
1 2 3 4
|
frgrwopreglem1 |
⊢ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) |
6 |
|
hashv01gt1 |
⊢ ( 𝐴 ∈ V → ( ( ♯ ‘ 𝐴 ) = 0 ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) ) |
7 |
|
hasheq0 |
⊢ ( 𝐴 ∈ V → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) ) |
8 |
|
biidd |
⊢ ( 𝐴 ∈ V → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ( ♯ ‘ 𝐴 ) = 1 ) ) |
9 |
|
biidd |
⊢ ( 𝐴 ∈ V → ( 1 < ( ♯ ‘ 𝐴 ) ↔ 1 < ( ♯ ‘ 𝐴 ) ) ) |
10 |
7 8 9
|
3orbi123d |
⊢ ( 𝐴 ∈ V → ( ( ( ♯ ‘ 𝐴 ) = 0 ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) ↔ ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) ) ) |
11 |
|
hashv01gt1 |
⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) ) |
12 |
|
hasheq0 |
⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) ) |
13 |
|
biidd |
⊢ ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 1 ↔ ( ♯ ‘ 𝐵 ) = 1 ) ) |
14 |
|
biidd |
⊢ ( 𝐵 ∈ V → ( 1 < ( ♯ ‘ 𝐵 ) ↔ 1 < ( ♯ ‘ 𝐵 ) ) ) |
15 |
12 13 14
|
3orbi123d |
⊢ ( 𝐵 ∈ V → ( ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) ↔ ( 𝐵 = ∅ ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) ) ) |
16 |
|
olc |
⊢ ( 𝐵 = ∅ → ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) |
17 |
16
|
olcd |
⊢ ( 𝐵 = ∅ → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) |
18 |
17
|
2a1d |
⊢ ( 𝐵 = ∅ → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
19 |
|
orc |
⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) |
20 |
19
|
olcd |
⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) |
21 |
20
|
2a1d |
⊢ ( ( ♯ ‘ 𝐵 ) = 1 → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
22 |
|
olc |
⊢ ( 𝐴 = ∅ → ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ) |
23 |
22
|
orcd |
⊢ ( 𝐴 = ∅ → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) |
24 |
23
|
2a1d |
⊢ ( 𝐴 = ∅ → ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
25 |
|
orc |
⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ) |
26 |
25
|
orcd |
⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) |
27 |
26
|
2a1d |
⊢ ( ( ♯ ‘ 𝐴 ) = 1 → ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
28 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
29 |
1 2 3 4 28
|
frgrwopreglem5 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
30 |
|
frgrusgr |
⊢ ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph ) |
31 |
|
simplll |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) → 𝐺 ∈ USGraph ) |
32 |
|
elrabi |
⊢ ( 𝑎 ∈ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } → 𝑎 ∈ 𝑉 ) |
33 |
32 3
|
eleq2s |
⊢ ( 𝑎 ∈ 𝐴 → 𝑎 ∈ 𝑉 ) |
34 |
33
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑎 ∈ 𝑉 ) |
35 |
34
|
ad3antlr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) → 𝑎 ∈ 𝑉 ) |
36 |
|
rabidim1 |
⊢ ( 𝑥 ∈ { 𝑥 ∈ 𝑉 ∣ ( 𝐷 ‘ 𝑥 ) = 𝐾 } → 𝑥 ∈ 𝑉 ) |
37 |
36 3
|
eleq2s |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑉 ) |
38 |
37
|
adantl |
⊢ ( ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝑉 ) |
39 |
38
|
ad3antlr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) → 𝑥 ∈ 𝑉 ) |
40 |
|
simprl |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) → 𝑎 ≠ 𝑥 ) |
41 |
|
eldifi |
⊢ ( 𝑏 ∈ ( 𝑉 ∖ 𝐴 ) → 𝑏 ∈ 𝑉 ) |
42 |
41 4
|
eleq2s |
⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ 𝑉 ) |
43 |
42
|
adantr |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑏 ∈ 𝑉 ) |
44 |
43
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) → 𝑏 ∈ 𝑉 ) |
45 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝑉 ∖ 𝐴 ) → 𝑦 ∈ 𝑉 ) |
46 |
45 4
|
eleq2s |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝑉 ) |
47 |
46
|
adantl |
⊢ ( ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 𝑦 ∈ 𝑉 ) |
48 |
47
|
ad2antlr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) → 𝑦 ∈ 𝑉 ) |
49 |
|
simprr |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) → 𝑏 ≠ 𝑦 ) |
50 |
1 28
|
4cyclusnfrgr |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑥 ∈ 𝑉 ∧ 𝑎 ≠ 𝑥 ) ∧ ( 𝑏 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑏 ≠ 𝑦 ) ) → ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐺 ∉ FriendGraph ) ) |
51 |
31 35 39 40 44 48 49 50
|
syl133anc |
⊢ ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ) → ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐺 ∉ FriendGraph ) ) |
52 |
51
|
exp4b |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) → ( ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) → 𝐺 ∉ FriendGraph ) ) ) ) |
53 |
52
|
3impd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐺 ∉ FriendGraph ) ) |
54 |
|
df-nel |
⊢ ( 𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph ) |
55 |
|
pm2.21 |
⊢ ( ¬ 𝐺 ∈ FriendGraph → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) |
56 |
54 55
|
sylbi |
⊢ ( 𝐺 ∉ FriendGraph → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) |
57 |
53 56
|
syl6 |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) ∧ ( 𝑏 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
58 |
57
|
rexlimdvva |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( 𝑎 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
59 |
58
|
rexlimdvva |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
60 |
59
|
com23 |
⊢ ( 𝐺 ∈ USGraph → ( 𝐺 ∈ FriendGraph → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
61 |
30 60
|
mpcom |
⊢ ( 𝐺 ∈ FriendGraph → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) |
62 |
61
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑎 ∈ 𝐴 ∃ 𝑥 ∈ 𝐴 ∃ 𝑏 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ( ( 𝑎 ≠ 𝑥 ∧ 𝑏 ≠ 𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) |
63 |
29 62
|
mpd |
⊢ ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) |
64 |
63
|
3exp |
⊢ ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝐴 ) → ( 1 < ( ♯ ‘ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
65 |
64
|
com3l |
⊢ ( 1 < ( ♯ ‘ 𝐴 ) → ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
66 |
24 27 65
|
3jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
67 |
66
|
com12 |
⊢ ( 1 < ( ♯ ‘ 𝐵 ) → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
68 |
18 21 67
|
3jaoi |
⊢ ( ( 𝐵 = ∅ ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
69 |
15 68
|
syl6bi |
⊢ ( 𝐵 ∈ V → ( ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) ) |
70 |
11 69
|
mpd |
⊢ ( 𝐵 ∈ V → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
71 |
70
|
com12 |
⊢ ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ∈ V → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
72 |
10 71
|
syl6bi |
⊢ ( 𝐴 ∈ V → ( ( ( ♯ ‘ 𝐴 ) = 0 ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ∈ V → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) ) |
73 |
6 72
|
mpd |
⊢ ( 𝐴 ∈ V → ( 𝐵 ∈ V → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) |
74 |
73
|
imp |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) |
75 |
5 74
|
ax-mp |
⊢ ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) |