| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrwopreg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreg.a | ⊢ 𝐴  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 4 |  | frgrwopreg.b | ⊢ 𝐵  =  ( 𝑉  ∖  𝐴 ) | 
						
							| 5 | 1 2 3 4 | frgrwopreglem1 | ⊢ ( 𝐴  ∈  V  ∧  𝐵  ∈  V ) | 
						
							| 6 |  | hashv01gt1 | ⊢ ( 𝐴  ∈  V  →  ( ( ♯ ‘ 𝐴 )  =  0  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 7 |  | hasheq0 | ⊢ ( 𝐴  ∈  V  →  ( ( ♯ ‘ 𝐴 )  =  0  ↔  𝐴  =  ∅ ) ) | 
						
							| 8 |  | biidd | ⊢ ( 𝐴  ∈  V  →  ( ( ♯ ‘ 𝐴 )  =  1  ↔  ( ♯ ‘ 𝐴 )  =  1 ) ) | 
						
							| 9 |  | biidd | ⊢ ( 𝐴  ∈  V  →  ( 1  <  ( ♯ ‘ 𝐴 )  ↔  1  <  ( ♯ ‘ 𝐴 ) ) ) | 
						
							| 10 | 7 8 9 | 3orbi123d | ⊢ ( 𝐴  ∈  V  →  ( ( ( ♯ ‘ 𝐴 )  =  0  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  ↔  ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) ) ) ) | 
						
							| 11 |  | hashv01gt1 | ⊢ ( 𝐵  ∈  V  →  ( ( ♯ ‘ 𝐵 )  =  0  ∨  ( ♯ ‘ 𝐵 )  =  1  ∨  1  <  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 12 |  | hasheq0 | ⊢ ( 𝐵  ∈  V  →  ( ( ♯ ‘ 𝐵 )  =  0  ↔  𝐵  =  ∅ ) ) | 
						
							| 13 |  | biidd | ⊢ ( 𝐵  ∈  V  →  ( ( ♯ ‘ 𝐵 )  =  1  ↔  ( ♯ ‘ 𝐵 )  =  1 ) ) | 
						
							| 14 |  | biidd | ⊢ ( 𝐵  ∈  V  →  ( 1  <  ( ♯ ‘ 𝐵 )  ↔  1  <  ( ♯ ‘ 𝐵 ) ) ) | 
						
							| 15 | 12 13 14 | 3orbi123d | ⊢ ( 𝐵  ∈  V  →  ( ( ( ♯ ‘ 𝐵 )  =  0  ∨  ( ♯ ‘ 𝐵 )  =  1  ∨  1  <  ( ♯ ‘ 𝐵 ) )  ↔  ( 𝐵  =  ∅  ∨  ( ♯ ‘ 𝐵 )  =  1  ∨  1  <  ( ♯ ‘ 𝐵 ) ) ) ) | 
						
							| 16 |  | olc | ⊢ ( 𝐵  =  ∅  →  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) | 
						
							| 17 | 16 | olcd | ⊢ ( 𝐵  =  ∅  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 18 | 17 | 2a1d | ⊢ ( 𝐵  =  ∅  →  ( ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 19 |  | orc | ⊢ ( ( ♯ ‘ 𝐵 )  =  1  →  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) | 
						
							| 20 | 19 | olcd | ⊢ ( ( ♯ ‘ 𝐵 )  =  1  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 21 | 20 | 2a1d | ⊢ ( ( ♯ ‘ 𝐵 )  =  1  →  ( ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 22 |  | olc | ⊢ ( 𝐴  =  ∅  →  ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ ) ) | 
						
							| 23 | 22 | orcd | ⊢ ( 𝐴  =  ∅  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 24 | 23 | 2a1d | ⊢ ( 𝐴  =  ∅  →  ( 1  <  ( ♯ ‘ 𝐵 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 25 |  | orc | ⊢ ( ( ♯ ‘ 𝐴 )  =  1  →  ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ ) ) | 
						
							| 26 | 25 | orcd | ⊢ ( ( ♯ ‘ 𝐴 )  =  1  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 27 | 26 | 2a1d | ⊢ ( ( ♯ ‘ 𝐴 )  =  1  →  ( 1  <  ( ♯ ‘ 𝐵 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 29 | 1 2 3 4 28 | frgrwopreglem5 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝐴 )  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 30 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 31 |  | simplll | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) )  →  𝐺  ∈  USGraph ) | 
						
							| 32 |  | elrabi | ⊢ ( 𝑎  ∈  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  →  𝑎  ∈  𝑉 ) | 
						
							| 33 | 32 3 | eleq2s | ⊢ ( 𝑎  ∈  𝐴  →  𝑎  ∈  𝑉 ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑎  ∈  𝑉 ) | 
						
							| 35 | 34 | ad3antlr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) )  →  𝑎  ∈  𝑉 ) | 
						
							| 36 |  | rabidim1 | ⊢ ( 𝑥  ∈  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  →  𝑥  ∈  𝑉 ) | 
						
							| 37 | 36 3 | eleq2s | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝑉 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  𝑉 ) | 
						
							| 39 | 38 | ad3antlr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 40 |  | simprl | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) )  →  𝑎  ≠  𝑥 ) | 
						
							| 41 |  | eldifi | ⊢ ( 𝑏  ∈  ( 𝑉  ∖  𝐴 )  →  𝑏  ∈  𝑉 ) | 
						
							| 42 | 41 4 | eleq2s | ⊢ ( 𝑏  ∈  𝐵  →  𝑏  ∈  𝑉 ) | 
						
							| 43 | 42 | adantr | ⊢ ( ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑏  ∈  𝑉 ) | 
						
							| 44 | 43 | ad2antlr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) )  →  𝑏  ∈  𝑉 ) | 
						
							| 45 |  | eldifi | ⊢ ( 𝑦  ∈  ( 𝑉  ∖  𝐴 )  →  𝑦  ∈  𝑉 ) | 
						
							| 46 | 45 4 | eleq2s | ⊢ ( 𝑦  ∈  𝐵  →  𝑦  ∈  𝑉 ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  𝑦  ∈  𝑉 ) | 
						
							| 48 | 47 | ad2antlr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 49 |  | simprr | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) )  →  𝑏  ≠  𝑦 ) | 
						
							| 50 | 1 28 | 4cyclusnfrgr | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝑉  ∧  𝑥  ∈  𝑉  ∧  𝑎  ≠  𝑥 )  ∧  ( 𝑏  ∈  𝑉  ∧  𝑦  ∈  𝑉  ∧  𝑏  ≠  𝑦 ) )  →  ( ( ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝐺  ∉   FriendGraph  ) ) | 
						
							| 51 | 31 35 39 40 44 48 49 50 | syl133anc | ⊢ ( ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  ∧  ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 ) )  →  ( ( ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝐺  ∉   FriendGraph  ) ) | 
						
							| 52 | 51 | exp4b | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  →  ( ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) )  →  𝐺  ∉   FriendGraph  ) ) ) ) | 
						
							| 53 | 52 | 3impd | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  𝐺  ∉   FriendGraph  ) ) | 
						
							| 54 |  | df-nel | ⊢ ( 𝐺  ∉   FriendGraph   ↔  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 55 |  | pm2.21 | ⊢ ( ¬  𝐺  ∈   FriendGraph   →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) | 
						
							| 56 | 54 55 | sylbi | ⊢ ( 𝐺  ∉   FriendGraph   →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) | 
						
							| 57 | 53 56 | syl6 | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  ∧  ( 𝑏  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 58 | 57 | rexlimdvva | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝑎  ∈  𝐴  ∧  𝑥  ∈  𝐴 ) )  →  ( ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 59 | 58 | rexlimdvva | ⊢ ( 𝐺  ∈  USGraph  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 60 | 59 | com23 | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝐺  ∈   FriendGraph   →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 61 | 30 60 | mpcom | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) | 
						
							| 62 | 61 | 3ad2ant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝐴 )  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ( ∃ 𝑎  ∈  𝐴 ∃ 𝑥  ∈  𝐴 ∃ 𝑏  ∈  𝐵 ∃ 𝑦  ∈  𝐵 ( ( 𝑎  ≠  𝑥  ∧  𝑏  ≠  𝑦 )  ∧  ( { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑏 ,  𝑥 }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( { 𝑥 ,  𝑦 }  ∈  ( Edg ‘ 𝐺 )  ∧  { 𝑦 ,  𝑎 }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) | 
						
							| 63 | 29 62 | mpd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  1  <  ( ♯ ‘ 𝐴 )  ∧  1  <  ( ♯ ‘ 𝐵 ) )  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) | 
						
							| 64 | 63 | 3exp | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 1  <  ( ♯ ‘ 𝐴 )  →  ( 1  <  ( ♯ ‘ 𝐵 )  →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 65 | 64 | com3l | ⊢ ( 1  <  ( ♯ ‘ 𝐴 )  →  ( 1  <  ( ♯ ‘ 𝐵 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 66 | 24 27 65 | 3jaoi | ⊢ ( ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 1  <  ( ♯ ‘ 𝐵 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 67 | 66 | com12 | ⊢ ( 1  <  ( ♯ ‘ 𝐵 )  →  ( ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 68 | 18 21 67 | 3jaoi | ⊢ ( ( 𝐵  =  ∅  ∨  ( ♯ ‘ 𝐵 )  =  1  ∨  1  <  ( ♯ ‘ 𝐵 ) )  →  ( ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 69 | 15 68 | biimtrdi | ⊢ ( 𝐵  ∈  V  →  ( ( ( ♯ ‘ 𝐵 )  =  0  ∨  ( ♯ ‘ 𝐵 )  =  1  ∨  1  <  ( ♯ ‘ 𝐵 ) )  →  ( ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) ) | 
						
							| 70 | 11 69 | mpd | ⊢ ( 𝐵  ∈  V  →  ( ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 71 | 70 | com12 | ⊢ ( ( 𝐴  =  ∅  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 𝐵  ∈  V  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 72 | 10 71 | biimtrdi | ⊢ ( 𝐴  ∈  V  →  ( ( ( ♯ ‘ 𝐴 )  =  0  ∨  ( ♯ ‘ 𝐴 )  =  1  ∨  1  <  ( ♯ ‘ 𝐴 ) )  →  ( 𝐵  ∈  V  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) ) | 
						
							| 73 | 6 72 | mpd | ⊢ ( 𝐴  ∈  V  →  ( 𝐵  ∈  V  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) ) | 
						
							| 74 | 73 | imp | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) ) | 
						
							| 75 | 5 74 | ax-mp | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ 𝐴 )  =  1  ∨  𝐴  =  ∅ )  ∨  ( ( ♯ ‘ 𝐵 )  =  1  ∨  𝐵  =  ∅ ) ) ) |