Metamath Proof Explorer


Theorem frgrwopreg

Description: In a friendship graph there are either no vertices ( A = (/) ) or exactly one vertex ( ( #A ) = 1 ) having degree K , or all ( B = (/) ) or all except one vertices ( ( #B ) = 1 ) have degree K . (Contributed by Alexander van der Vekens, 31-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 3-Jan-2022)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
Assertion frgrwopreg ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 1 2 3 4 frgrwopreglem1 ( 𝐴 ∈ V ∧ 𝐵 ∈ V )
6 hashv01gt1 ( 𝐴 ∈ V → ( ( ♯ ‘ 𝐴 ) = 0 ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) )
7 hasheq0 ( 𝐴 ∈ V → ( ( ♯ ‘ 𝐴 ) = 0 ↔ 𝐴 = ∅ ) )
8 biidd ( 𝐴 ∈ V → ( ( ♯ ‘ 𝐴 ) = 1 ↔ ( ♯ ‘ 𝐴 ) = 1 ) )
9 biidd ( 𝐴 ∈ V → ( 1 < ( ♯ ‘ 𝐴 ) ↔ 1 < ( ♯ ‘ 𝐴 ) ) )
10 7 8 9 3orbi123d ( 𝐴 ∈ V → ( ( ( ♯ ‘ 𝐴 ) = 0 ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) ↔ ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) ) )
11 hashv01gt1 ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) )
12 hasheq0 ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 0 ↔ 𝐵 = ∅ ) )
13 biidd ( 𝐵 ∈ V → ( ( ♯ ‘ 𝐵 ) = 1 ↔ ( ♯ ‘ 𝐵 ) = 1 ) )
14 biidd ( 𝐵 ∈ V → ( 1 < ( ♯ ‘ 𝐵 ) ↔ 1 < ( ♯ ‘ 𝐵 ) ) )
15 12 13 14 3orbi123d ( 𝐵 ∈ V → ( ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) ↔ ( 𝐵 = ∅ ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) ) )
16 olc ( 𝐵 = ∅ → ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) )
17 16 olcd ( 𝐵 = ∅ → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) )
18 17 2a1d ( 𝐵 = ∅ → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
19 orc ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) )
20 19 olcd ( ( ♯ ‘ 𝐵 ) = 1 → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) )
21 20 2a1d ( ( ♯ ‘ 𝐵 ) = 1 → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
22 olc ( 𝐴 = ∅ → ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) )
23 22 orcd ( 𝐴 = ∅ → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) )
24 23 2a1d ( 𝐴 = ∅ → ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
25 orc ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) )
26 25 orcd ( ( ♯ ‘ 𝐴 ) = 1 → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) )
27 26 2a1d ( ( ♯ ‘ 𝐴 ) = 1 → ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
28 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
29 1 2 3 4 28 frgrwopreglem5 ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) )
30 frgrusgr ( 𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph )
31 simplll ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ( 𝑎𝑥𝑏𝑦 ) ) → 𝐺 ∈ USGraph )
32 elrabi ( 𝑎 ∈ { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 } → 𝑎𝑉 )
33 32 3 eleq2s ( 𝑎𝐴𝑎𝑉 )
34 33 adantr ( ( 𝑎𝐴𝑥𝐴 ) → 𝑎𝑉 )
35 34 ad3antlr ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ( 𝑎𝑥𝑏𝑦 ) ) → 𝑎𝑉 )
36 rabidim1 ( 𝑥 ∈ { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 } → 𝑥𝑉 )
37 36 3 eleq2s ( 𝑥𝐴𝑥𝑉 )
38 37 adantl ( ( 𝑎𝐴𝑥𝐴 ) → 𝑥𝑉 )
39 38 ad3antlr ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ( 𝑎𝑥𝑏𝑦 ) ) → 𝑥𝑉 )
40 simprl ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ( 𝑎𝑥𝑏𝑦 ) ) → 𝑎𝑥 )
41 eldifi ( 𝑏 ∈ ( 𝑉𝐴 ) → 𝑏𝑉 )
42 41 4 eleq2s ( 𝑏𝐵𝑏𝑉 )
43 42 adantr ( ( 𝑏𝐵𝑦𝐵 ) → 𝑏𝑉 )
44 43 ad2antlr ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ( 𝑎𝑥𝑏𝑦 ) ) → 𝑏𝑉 )
45 eldifi ( 𝑦 ∈ ( 𝑉𝐴 ) → 𝑦𝑉 )
46 45 4 eleq2s ( 𝑦𝐵𝑦𝑉 )
47 46 adantl ( ( 𝑏𝐵𝑦𝐵 ) → 𝑦𝑉 )
48 47 ad2antlr ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ( 𝑎𝑥𝑏𝑦 ) ) → 𝑦𝑉 )
49 simprr ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ( 𝑎𝑥𝑏𝑦 ) ) → 𝑏𝑦 )
50 1 28 4cyclusnfrgr ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝑉𝑥𝑉𝑎𝑥 ) ∧ ( 𝑏𝑉𝑦𝑉𝑏𝑦 ) ) → ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐺 ∉ FriendGraph ) )
51 31 35 39 40 44 48 49 50 syl133anc ( ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) ∧ ( 𝑎𝑥𝑏𝑦 ) ) → ( ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐺 ∉ FriendGraph ) )
52 51 exp4b ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ( 𝑎𝑥𝑏𝑦 ) → ( ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) → ( ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) → 𝐺 ∉ FriendGraph ) ) ) )
53 52 3impd ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐺 ∉ FriendGraph ) )
54 df-nel ( 𝐺 ∉ FriendGraph ↔ ¬ 𝐺 ∈ FriendGraph )
55 pm2.21 ( ¬ 𝐺 ∈ FriendGraph → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) )
56 54 55 sylbi ( 𝐺 ∉ FriendGraph → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) )
57 53 56 syl6 ( ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) ∧ ( 𝑏𝐵𝑦𝐵 ) ) → ( ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
58 57 rexlimdvva ( ( 𝐺 ∈ USGraph ∧ ( 𝑎𝐴𝑥𝐴 ) ) → ( ∃ 𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
59 58 rexlimdvva ( 𝐺 ∈ USGraph → ( ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
60 59 com23 ( 𝐺 ∈ USGraph → ( 𝐺 ∈ FriendGraph → ( ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
61 30 60 mpcom ( 𝐺 ∈ FriendGraph → ( ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) )
62 61 3ad2ant1 ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ∃ 𝑎𝐴𝑥𝐴𝑏𝐵𝑦𝐵 ( ( 𝑎𝑥𝑏𝑦 ) ∧ ( { 𝑎 , 𝑏 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑏 , 𝑥 } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( { 𝑥 , 𝑦 } ∈ ( Edg ‘ 𝐺 ) ∧ { 𝑦 , 𝑎 } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) )
63 29 62 mpd ( ( 𝐺 ∈ FriendGraph ∧ 1 < ( ♯ ‘ 𝐴 ) ∧ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) )
64 63 3exp ( 𝐺 ∈ FriendGraph → ( 1 < ( ♯ ‘ 𝐴 ) → ( 1 < ( ♯ ‘ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
65 64 com3l ( 1 < ( ♯ ‘ 𝐴 ) → ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
66 24 27 65 3jaoi ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 1 < ( ♯ ‘ 𝐵 ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
67 66 com12 ( 1 < ( ♯ ‘ 𝐵 ) → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
68 18 21 67 3jaoi ( ( 𝐵 = ∅ ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
69 15 68 syl6bi ( 𝐵 ∈ V → ( ( ( ♯ ‘ 𝐵 ) = 0 ∨ ( ♯ ‘ 𝐵 ) = 1 ∨ 1 < ( ♯ ‘ 𝐵 ) ) → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) )
70 11 69 mpd ( 𝐵 ∈ V → ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
71 70 com12 ( ( 𝐴 = ∅ ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ∈ V → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
72 10 71 syl6bi ( 𝐴 ∈ V → ( ( ( ♯ ‘ 𝐴 ) = 0 ∨ ( ♯ ‘ 𝐴 ) = 1 ∨ 1 < ( ♯ ‘ 𝐴 ) ) → ( 𝐵 ∈ V → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) ) )
73 6 72 mpd ( 𝐴 ∈ V → ( 𝐵 ∈ V → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) ) )
74 73 imp ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) ) )
75 5 74 ax-mp ( 𝐺 ∈ FriendGraph → ( ( ( ♯ ‘ 𝐴 ) = 1 ∨ 𝐴 = ∅ ) ∨ ( ( ♯ ‘ 𝐵 ) = 1 ∨ 𝐵 = ∅ ) ) )