| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 4cyclusnfrgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 4cyclusnfrgr.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | simprl | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  ∧  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) )  →  ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 ) ) | 
						
							| 4 |  | simprr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  ∧  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) )  →  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) | 
						
							| 5 |  | simpl3 | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  ∧  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) )  →  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) ) | 
						
							| 6 |  | 4cycl2vnunb | ⊢ ( ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  →  ¬  ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸 ) | 
						
							| 7 | 3 4 5 6 | syl3anc | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  ∧  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) )  →  ¬  ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸 ) | 
						
							| 8 | 1 2 | frcond1 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  →  ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸 ) ) | 
						
							| 9 |  | pm2.24 | ⊢ ( ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸  →  ( ¬  ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸  →  ¬  𝐺  ∈   FriendGraph  ) ) | 
						
							| 10 | 8 9 | syl6com | ⊢ ( ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  →  ( 𝐺  ∈   FriendGraph   →  ( ¬  ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸  →  ¬  𝐺  ∈   FriendGraph  ) ) ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ¬  ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸  →  ¬  𝐺  ∈   FriendGraph  ) ) ) | 
						
							| 12 | 11 | com23 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  →  ( ¬  ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸  →  ( 𝐺  ∈   FriendGraph   →  ¬  𝐺  ∈   FriendGraph  ) ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  ∧  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) )  →  ( ¬  ∃! 𝑥  ∈  𝑉 { { 𝐴 ,  𝑥 } ,  { 𝑥 ,  𝐶 } }  ⊆  𝐸  →  ( 𝐺  ∈   FriendGraph   →  ¬  𝐺  ∈   FriendGraph  ) ) ) | 
						
							| 14 | 7 13 | mpd | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  ∧  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) )  →  ( 𝐺  ∈   FriendGraph   →  ¬  𝐺  ∈   FriendGraph  ) ) | 
						
							| 15 | 14 | pm2.01d | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  ∧  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) )  →  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 16 |  | df-nel | ⊢ ( 𝐺  ∉   FriendGraph   ↔  ¬  𝐺  ∈   FriendGraph  ) | 
						
							| 17 | 15 16 | sylibr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  ∧  ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) ) )  →  𝐺  ∉   FriendGraph  ) | 
						
							| 18 | 17 | ex | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( 𝐴  ∈  𝑉  ∧  𝐶  ∈  𝑉  ∧  𝐴  ≠  𝐶 )  ∧  ( 𝐵  ∈  𝑉  ∧  𝐷  ∈  𝑉  ∧  𝐵  ≠  𝐷 ) )  →  ( ( ( { 𝐴 ,  𝐵 }  ∈  𝐸  ∧  { 𝐵 ,  𝐶 }  ∈  𝐸 )  ∧  ( { 𝐶 ,  𝐷 }  ∈  𝐸  ∧  { 𝐷 ,  𝐴 }  ∈  𝐸 ) )  →  𝐺  ∉   FriendGraph  ) ) |