| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrwopreg.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | frgrwopreg.a |  |-  A = { x e. V | ( D ` x ) = K } | 
						
							| 4 |  | frgrwopreg.b |  |-  B = ( V \ A ) | 
						
							| 5 | 1 2 3 4 | frgrwopreglem1 |  |-  ( A e. _V /\ B e. _V ) | 
						
							| 6 |  | hashv01gt1 |  |-  ( A e. _V -> ( ( # ` A ) = 0 \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) ) | 
						
							| 7 |  | hasheq0 |  |-  ( A e. _V -> ( ( # ` A ) = 0 <-> A = (/) ) ) | 
						
							| 8 |  | biidd |  |-  ( A e. _V -> ( ( # ` A ) = 1 <-> ( # ` A ) = 1 ) ) | 
						
							| 9 |  | biidd |  |-  ( A e. _V -> ( 1 < ( # ` A ) <-> 1 < ( # ` A ) ) ) | 
						
							| 10 | 7 8 9 | 3orbi123d |  |-  ( A e. _V -> ( ( ( # ` A ) = 0 \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) <-> ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) ) ) | 
						
							| 11 |  | hashv01gt1 |  |-  ( B e. _V -> ( ( # ` B ) = 0 \/ ( # ` B ) = 1 \/ 1 < ( # ` B ) ) ) | 
						
							| 12 |  | hasheq0 |  |-  ( B e. _V -> ( ( # ` B ) = 0 <-> B = (/) ) ) | 
						
							| 13 |  | biidd |  |-  ( B e. _V -> ( ( # ` B ) = 1 <-> ( # ` B ) = 1 ) ) | 
						
							| 14 |  | biidd |  |-  ( B e. _V -> ( 1 < ( # ` B ) <-> 1 < ( # ` B ) ) ) | 
						
							| 15 | 12 13 14 | 3orbi123d |  |-  ( B e. _V -> ( ( ( # ` B ) = 0 \/ ( # ` B ) = 1 \/ 1 < ( # ` B ) ) <-> ( B = (/) \/ ( # ` B ) = 1 \/ 1 < ( # ` B ) ) ) ) | 
						
							| 16 |  | olc |  |-  ( B = (/) -> ( ( # ` B ) = 1 \/ B = (/) ) ) | 
						
							| 17 | 16 | olcd |  |-  ( B = (/) -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) | 
						
							| 18 | 17 | 2a1d |  |-  ( B = (/) -> ( ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 19 |  | orc |  |-  ( ( # ` B ) = 1 -> ( ( # ` B ) = 1 \/ B = (/) ) ) | 
						
							| 20 | 19 | olcd |  |-  ( ( # ` B ) = 1 -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) | 
						
							| 21 | 20 | 2a1d |  |-  ( ( # ` B ) = 1 -> ( ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 22 |  | olc |  |-  ( A = (/) -> ( ( # ` A ) = 1 \/ A = (/) ) ) | 
						
							| 23 | 22 | orcd |  |-  ( A = (/) -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) | 
						
							| 24 | 23 | 2a1d |  |-  ( A = (/) -> ( 1 < ( # ` B ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 25 |  | orc |  |-  ( ( # ` A ) = 1 -> ( ( # ` A ) = 1 \/ A = (/) ) ) | 
						
							| 26 | 25 | orcd |  |-  ( ( # ` A ) = 1 -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) | 
						
							| 27 | 26 | 2a1d |  |-  ( ( # ` A ) = 1 -> ( 1 < ( # ` B ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 28 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 29 | 1 2 3 4 28 | frgrwopreglem5 |  |-  ( ( G e. FriendGraph /\ 1 < ( # ` A ) /\ 1 < ( # ` B ) ) -> E. a e. A E. x e. A E. b e. B E. y e. B ( ( a =/= x /\ b =/= y ) /\ ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) ) | 
						
							| 30 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 31 |  | simplll |  |-  ( ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) /\ ( a =/= x /\ b =/= y ) ) -> G e. USGraph ) | 
						
							| 32 |  | elrabi |  |-  ( a e. { x e. V | ( D ` x ) = K } -> a e. V ) | 
						
							| 33 | 32 3 | eleq2s |  |-  ( a e. A -> a e. V ) | 
						
							| 34 | 33 | adantr |  |-  ( ( a e. A /\ x e. A ) -> a e. V ) | 
						
							| 35 | 34 | ad3antlr |  |-  ( ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) /\ ( a =/= x /\ b =/= y ) ) -> a e. V ) | 
						
							| 36 |  | rabidim1 |  |-  ( x e. { x e. V | ( D ` x ) = K } -> x e. V ) | 
						
							| 37 | 36 3 | eleq2s |  |-  ( x e. A -> x e. V ) | 
						
							| 38 | 37 | adantl |  |-  ( ( a e. A /\ x e. A ) -> x e. V ) | 
						
							| 39 | 38 | ad3antlr |  |-  ( ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) /\ ( a =/= x /\ b =/= y ) ) -> x e. V ) | 
						
							| 40 |  | simprl |  |-  ( ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) /\ ( a =/= x /\ b =/= y ) ) -> a =/= x ) | 
						
							| 41 |  | eldifi |  |-  ( b e. ( V \ A ) -> b e. V ) | 
						
							| 42 | 41 4 | eleq2s |  |-  ( b e. B -> b e. V ) | 
						
							| 43 | 42 | adantr |  |-  ( ( b e. B /\ y e. B ) -> b e. V ) | 
						
							| 44 | 43 | ad2antlr |  |-  ( ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) /\ ( a =/= x /\ b =/= y ) ) -> b e. V ) | 
						
							| 45 |  | eldifi |  |-  ( y e. ( V \ A ) -> y e. V ) | 
						
							| 46 | 45 4 | eleq2s |  |-  ( y e. B -> y e. V ) | 
						
							| 47 | 46 | adantl |  |-  ( ( b e. B /\ y e. B ) -> y e. V ) | 
						
							| 48 | 47 | ad2antlr |  |-  ( ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) /\ ( a =/= x /\ b =/= y ) ) -> y e. V ) | 
						
							| 49 |  | simprr |  |-  ( ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) /\ ( a =/= x /\ b =/= y ) ) -> b =/= y ) | 
						
							| 50 | 1 28 | 4cyclusnfrgr |  |-  ( ( G e. USGraph /\ ( a e. V /\ x e. V /\ a =/= x ) /\ ( b e. V /\ y e. V /\ b =/= y ) ) -> ( ( ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> G e/ FriendGraph ) ) | 
						
							| 51 | 31 35 39 40 44 48 49 50 | syl133anc |  |-  ( ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) /\ ( a =/= x /\ b =/= y ) ) -> ( ( ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> G e/ FriendGraph ) ) | 
						
							| 52 | 51 | exp4b |  |-  ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) -> ( ( a =/= x /\ b =/= y ) -> ( ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) -> ( ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) -> G e/ FriendGraph ) ) ) ) | 
						
							| 53 | 52 | 3impd |  |-  ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) -> ( ( ( a =/= x /\ b =/= y ) /\ ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> G e/ FriendGraph ) ) | 
						
							| 54 |  | df-nel |  |-  ( G e/ FriendGraph <-> -. G e. FriendGraph ) | 
						
							| 55 |  | pm2.21 |  |-  ( -. G e. FriendGraph -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) | 
						
							| 56 | 54 55 | sylbi |  |-  ( G e/ FriendGraph -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) | 
						
							| 57 | 53 56 | syl6 |  |-  ( ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) /\ ( b e. B /\ y e. B ) ) -> ( ( ( a =/= x /\ b =/= y ) /\ ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 58 | 57 | rexlimdvva |  |-  ( ( G e. USGraph /\ ( a e. A /\ x e. A ) ) -> ( E. b e. B E. y e. B ( ( a =/= x /\ b =/= y ) /\ ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 59 | 58 | rexlimdvva |  |-  ( G e. USGraph -> ( E. a e. A E. x e. A E. b e. B E. y e. B ( ( a =/= x /\ b =/= y ) /\ ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 60 | 59 | com23 |  |-  ( G e. USGraph -> ( G e. FriendGraph -> ( E. a e. A E. x e. A E. b e. B E. y e. B ( ( a =/= x /\ b =/= y ) /\ ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 61 | 30 60 | mpcom |  |-  ( G e. FriendGraph -> ( E. a e. A E. x e. A E. b e. B E. y e. B ( ( a =/= x /\ b =/= y ) /\ ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) | 
						
							| 62 | 61 | 3ad2ant1 |  |-  ( ( G e. FriendGraph /\ 1 < ( # ` A ) /\ 1 < ( # ` B ) ) -> ( E. a e. A E. x e. A E. b e. B E. y e. B ( ( a =/= x /\ b =/= y ) /\ ( { a , b } e. ( Edg ` G ) /\ { b , x } e. ( Edg ` G ) ) /\ ( { x , y } e. ( Edg ` G ) /\ { y , a } e. ( Edg ` G ) ) ) -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) | 
						
							| 63 | 29 62 | mpd |  |-  ( ( G e. FriendGraph /\ 1 < ( # ` A ) /\ 1 < ( # ` B ) ) -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) | 
						
							| 64 | 63 | 3exp |  |-  ( G e. FriendGraph -> ( 1 < ( # ` A ) -> ( 1 < ( # ` B ) -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 65 | 64 | com3l |  |-  ( 1 < ( # ` A ) -> ( 1 < ( # ` B ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 66 | 24 27 65 | 3jaoi |  |-  ( ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( 1 < ( # ` B ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 67 | 66 | com12 |  |-  ( 1 < ( # ` B ) -> ( ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 68 | 18 21 67 | 3jaoi |  |-  ( ( B = (/) \/ ( # ` B ) = 1 \/ 1 < ( # ` B ) ) -> ( ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 69 | 15 68 | biimtrdi |  |-  ( B e. _V -> ( ( ( # ` B ) = 0 \/ ( # ` B ) = 1 \/ 1 < ( # ` B ) ) -> ( ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) ) | 
						
							| 70 | 11 69 | mpd |  |-  ( B e. _V -> ( ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 71 | 70 | com12 |  |-  ( ( A = (/) \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( B e. _V -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 72 | 10 71 | biimtrdi |  |-  ( A e. _V -> ( ( ( # ` A ) = 0 \/ ( # ` A ) = 1 \/ 1 < ( # ` A ) ) -> ( B e. _V -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) ) | 
						
							| 73 | 6 72 | mpd |  |-  ( A e. _V -> ( B e. _V -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) ) | 
						
							| 74 | 73 | imp |  |-  ( ( A e. _V /\ B e. _V ) -> ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) ) | 
						
							| 75 | 5 74 | ax-mp |  |-  ( G e. FriendGraph -> ( ( ( # ` A ) = 1 \/ A = (/) ) \/ ( ( # ` B ) = 1 \/ B = (/) ) ) ) |