Metamath Proof Explorer


Theorem hashv01gt1

Description: The size of a set is either 0 or 1 or greater than 1. (Contributed by Alexander van der Vekens, 29-Dec-2017)

Ref Expression
Assertion hashv01gt1
|- ( M e. V -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )

Proof

Step Hyp Ref Expression
1 hashnn0pnf
 |-  ( M e. V -> ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) )
2 elnn0
 |-  ( ( # ` M ) e. NN0 <-> ( ( # ` M ) e. NN \/ ( # ` M ) = 0 ) )
3 exmidne
 |-  ( ( # ` M ) = 1 \/ ( # ` M ) =/= 1 )
4 nngt1ne1
 |-  ( ( # ` M ) e. NN -> ( 1 < ( # ` M ) <-> ( # ` M ) =/= 1 ) )
5 4 orbi2d
 |-  ( ( # ` M ) e. NN -> ( ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) <-> ( ( # ` M ) = 1 \/ ( # ` M ) =/= 1 ) ) )
6 3 5 mpbiri
 |-  ( ( # ` M ) e. NN -> ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )
7 6 olcd
 |-  ( ( # ` M ) e. NN -> ( ( # ` M ) = 0 \/ ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) )
8 3orass
 |-  ( ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) <-> ( ( # ` M ) = 0 \/ ( ( # ` M ) = 1 \/ 1 < ( # ` M ) ) ) )
9 7 8 sylibr
 |-  ( ( # ` M ) e. NN -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )
10 3mix1
 |-  ( ( # ` M ) = 0 -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )
11 9 10 jaoi
 |-  ( ( ( # ` M ) e. NN \/ ( # ` M ) = 0 ) -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )
12 2 11 sylbi
 |-  ( ( # ` M ) e. NN0 -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )
13 1re
 |-  1 e. RR
14 ltpnf
 |-  ( 1 e. RR -> 1 < +oo )
15 13 14 ax-mp
 |-  1 < +oo
16 breq2
 |-  ( ( # ` M ) = +oo -> ( 1 < ( # ` M ) <-> 1 < +oo ) )
17 15 16 mpbiri
 |-  ( ( # ` M ) = +oo -> 1 < ( # ` M ) )
18 17 3mix3d
 |-  ( ( # ` M ) = +oo -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )
19 12 18 jaoi
 |-  ( ( ( # ` M ) e. NN0 \/ ( # ` M ) = +oo ) -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )
20 1 19 syl
 |-  ( M e. V -> ( ( # ` M ) = 0 \/ ( # ` M ) = 1 \/ 1 < ( # ` M ) ) )