| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrregorufr0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrregorufr0.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | frgrregorufr0.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 4 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝐷 ‘ 𝑥 )  =  𝐾  ↔  ( 𝐷 ‘ 𝑦 )  =  𝐾 ) ) | 
						
							| 5 | 4 | cbvrabv | ⊢ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  { 𝑦  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑦 )  =  𝐾 } | 
						
							| 6 |  | eqid | ⊢ ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) | 
						
							| 7 | 1 3 5 6 | frgrwopreg | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  1  ∨  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  ∅ )  ∨  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) )  =  1  ∨  ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  ∅ ) ) ) | 
						
							| 8 | 1 3 5 6 2 | frgrwopreg1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  1 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 9 | 8 | 3mix3d | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  1 )  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 10 | 9 | expcom | ⊢ ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  1  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 11 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑣  →  ( ( 𝐷 ‘ 𝑥 )  =  𝐾  ↔  ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 12 | 11 | cbvrabv | ⊢ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  { 𝑣  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑣 )  =  𝐾 } | 
						
							| 13 | 12 | eqeq1i | ⊢ ( { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  ∅  ↔  { 𝑣  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑣 )  =  𝐾 }  =  ∅ ) | 
						
							| 14 |  | rabeq0 | ⊢ ( { 𝑣  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑣 )  =  𝐾 }  =  ∅  ↔  ∀ 𝑣  ∈  𝑉 ¬  ( 𝐷 ‘ 𝑣 )  =  𝐾 ) | 
						
							| 15 | 13 14 | bitri | ⊢ ( { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  ∅  ↔  ∀ 𝑣  ∈  𝑉 ¬  ( 𝐷 ‘ 𝑣 )  =  𝐾 ) | 
						
							| 16 |  | neqne | ⊢ ( ¬  ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( 𝐷 ‘ 𝑣 )  ≠  𝐾 ) | 
						
							| 17 | 16 | ralimi | ⊢ ( ∀ 𝑣  ∈  𝑉 ¬  ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾 ) | 
						
							| 18 | 17 | 3mix2d | ⊢ ( ∀ 𝑣  ∈  𝑉 ¬  ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 19 | 18 | a1d | ⊢ ( ∀ 𝑣  ∈  𝑉 ¬  ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 20 | 15 19 | sylbi | ⊢ ( { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  ∅  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 21 | 10 20 | jaoi | ⊢ ( ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  1  ∨  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  ∅ )  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 22 | 1 3 5 6 2 | frgrwopreg2 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ♯ ‘ ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) )  =  1 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 23 | 22 | 3mix3d | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ♯ ‘ ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) )  =  1 )  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 24 | 23 | expcom | ⊢ ( ( ♯ ‘ ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) )  =  1  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 25 |  | difrab0eq | ⊢ ( ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  ∅  ↔  𝑉  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) | 
						
							| 26 | 12 | eqeq2i | ⊢ ( 𝑉  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  ↔  𝑉  =  { 𝑣  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑣 )  =  𝐾 } ) | 
						
							| 27 |  | rabid2 | ⊢ ( 𝑉  =  { 𝑣  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑣 )  =  𝐾 }  ↔  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) | 
						
							| 28 | 26 27 | bitri | ⊢ ( 𝑉  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  ↔  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) | 
						
							| 29 |  | 3mix1 | ⊢ ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 30 | 29 | a1d | ⊢ ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 31 | 28 30 | sylbi | ⊢ ( 𝑉  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 32 | 25 31 | sylbi | ⊢ ( ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  ∅  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 33 | 24 32 | jaoi | ⊢ ( ( ( ♯ ‘ ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) )  =  1  ∨  ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  ∅ )  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 34 | 21 33 | jaoi | ⊢ ( ( ( ( ♯ ‘ { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  1  ∨  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  =  ∅ )  ∨  ( ( ♯ ‘ ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } ) )  =  1  ∨  ( 𝑉  ∖  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } )  =  ∅ ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) ) | 
						
							| 35 | 7 34 | mpcom | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ∨  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  ≠  𝐾  ∨  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) |