| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrwopreg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreg.a | ⊢ 𝐴  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 4 |  | frgrwopreg.b | ⊢ 𝐵  =  ( 𝑉  ∖  𝐴 ) | 
						
							| 5 |  | frgrwopreg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 7 | 3 6 | rabex2 | ⊢ 𝐴  ∈  V | 
						
							| 8 |  | hash1snb | ⊢ ( 𝐴  ∈  V  →  ( ( ♯ ‘ 𝐴 )  =  1  ↔  ∃ 𝑣 𝐴  =  { 𝑣 } ) ) | 
						
							| 9 | 7 8 | ax-mp | ⊢ ( ( ♯ ‘ 𝐴 )  =  1  ↔  ∃ 𝑣 𝐴  =  { 𝑣 } ) | 
						
							| 10 |  | exsnrex | ⊢ ( ∃ 𝑣 𝐴  =  { 𝑣 }  ↔  ∃ 𝑣  ∈  𝐴 𝐴  =  { 𝑣 } ) | 
						
							| 11 | 3 | ssrab3 | ⊢ 𝐴  ⊆  𝑉 | 
						
							| 12 |  | ssrexv | ⊢ ( 𝐴  ⊆  𝑉  →  ( ∃ 𝑣  ∈  𝐴 𝐴  =  { 𝑣 }  →  ∃ 𝑣  ∈  𝑉 𝐴  =  { 𝑣 } ) ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ ( ∃ 𝑣  ∈  𝐴 𝐴  =  { 𝑣 }  →  ∃ 𝑣  ∈  𝑉 𝐴  =  { 𝑣 } ) | 
						
							| 14 | 1 2 3 4 5 | frgrwopregasn | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑣  ∈  𝑉  ∧  𝐴  =  { 𝑣 } )  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 15 | 14 | 3expia | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑣  ∈  𝑉 )  →  ( 𝐴  =  { 𝑣 }  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 16 | 15 | reximdva | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∃ 𝑣  ∈  𝑉 𝐴  =  { 𝑣 }  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 17 | 13 16 | syl5com | ⊢ ( ∃ 𝑣  ∈  𝐴 𝐴  =  { 𝑣 }  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 18 | 10 17 | sylbi | ⊢ ( ∃ 𝑣 𝐴  =  { 𝑣 }  →  ( 𝐺  ∈   FriendGraph   →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 19 | 18 | com12 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ∃ 𝑣 𝐴  =  { 𝑣 }  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 20 | 9 19 | biimtrid | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( ♯ ‘ 𝐴 )  =  1  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( ♯ ‘ 𝐴 )  =  1 )  →  ∃ 𝑣  ∈  𝑉 ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑣 } ) { 𝑣 ,  𝑤 }  ∈  𝐸 ) |