| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrwopreg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreg.a | ⊢ 𝐴  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 4 |  | frgrwopreg.b | ⊢ 𝐵  =  ( 𝑉  ∖  𝐴 ) | 
						
							| 5 |  | frgrwopreg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 | 1 2 3 4 5 | frgrwopreglem4 | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑣  ∈  𝐴 ∀ 𝑤  ∈  𝐵 { 𝑣 ,  𝑤 }  ∈  𝐸 ) | 
						
							| 7 |  | snidg | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 9 |  | eleq2 | ⊢ ( 𝐴  =  { 𝑋 }  →  ( 𝑋  ∈  𝐴  ↔  𝑋  ∈  { 𝑋 } ) ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  ( 𝑋  ∈  𝐴  ↔  𝑋  ∈  { 𝑋 } ) ) | 
						
							| 11 | 8 10 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  𝑋  ∈  𝐴 ) | 
						
							| 12 |  | preq1 | ⊢ ( 𝑣  =  𝑋  →  { 𝑣 ,  𝑤 }  =  { 𝑋 ,  𝑤 } ) | 
						
							| 13 | 12 | eleq1d | ⊢ ( 𝑣  =  𝑋  →  ( { 𝑣 ,  𝑤 }  ∈  𝐸  ↔  { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( 𝑣  =  𝑋  →  ( ∀ 𝑤  ∈  𝐵 { 𝑣 ,  𝑤 }  ∈  𝐸  ↔  ∀ 𝑤  ∈  𝐵 { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 15 | 14 | rspcv | ⊢ ( 𝑋  ∈  𝐴  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑤  ∈  𝐵 { 𝑣 ,  𝑤 }  ∈  𝐸  →  ∀ 𝑤  ∈  𝐵 { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 16 | 11 15 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑤  ∈  𝐵 { 𝑣 ,  𝑤 }  ∈  𝐸  →  ∀ 𝑤  ∈  𝐵 { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 17 |  | difeq2 | ⊢ ( 𝐴  =  { 𝑋 }  →  ( 𝑉  ∖  𝐴 )  =  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 18 | 4 17 | eqtrid | ⊢ ( 𝐴  =  { 𝑋 }  →  𝐵  =  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  𝐵  =  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 20 | 19 | raleqdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  ( ∀ 𝑤  ∈  𝐵 { 𝑋 ,  𝑤 }  ∈  𝐸  ↔  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 21 | 16 20 | sylibd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  ( ∀ 𝑣  ∈  𝐴 ∀ 𝑤  ∈  𝐵 { 𝑣 ,  𝑤 }  ∈  𝐸  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 22 | 6 21 | syl5com | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 23 | 22 | 3impib | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝐴  =  { 𝑋 } )  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) |