Metamath Proof Explorer


Theorem frgrwopregbsn

Description: According to statement 5 in Huneke p. 2: "If ... B is a singleton, then that singleton is a universal friend". This version of frgrwopreg2 is stricter (claiming that the singleton itself is a universal friend instead of claiming the existence of a universal friend only) and therefore closer to Huneke's statement. This strict variant, however, is not required for the proof of the friendship theorem. (Contributed by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgrwopregbsn ( ( 𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = { 𝑋 } ) → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑋 } ) { 𝑋 , 𝑤 } ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
6 1 2 3 4 5 frgrwopreglem4 ( 𝐺 ∈ FriendGraph → ∀ 𝑤𝐴𝑣𝐵 { 𝑤 , 𝑣 } ∈ 𝐸 )
7 ralcom ( ∀ 𝑤𝐴𝑣𝐵 { 𝑤 , 𝑣 } ∈ 𝐸 ↔ ∀ 𝑣𝐵𝑤𝐴 { 𝑤 , 𝑣 } ∈ 𝐸 )
8 snidg ( 𝑋𝑉𝑋 ∈ { 𝑋 } )
9 8 adantr ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → 𝑋 ∈ { 𝑋 } )
10 eleq2 ( 𝐵 = { 𝑋 } → ( 𝑋𝐵𝑋 ∈ { 𝑋 } ) )
11 10 adantl ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → ( 𝑋𝐵𝑋 ∈ { 𝑋 } ) )
12 9 11 mpbird ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → 𝑋𝐵 )
13 preq2 ( 𝑣 = 𝑋 → { 𝑤 , 𝑣 } = { 𝑤 , 𝑋 } )
14 prcom { 𝑤 , 𝑋 } = { 𝑋 , 𝑤 }
15 13 14 eqtrdi ( 𝑣 = 𝑋 → { 𝑤 , 𝑣 } = { 𝑋 , 𝑤 } )
16 15 eleq1d ( 𝑣 = 𝑋 → ( { 𝑤 , 𝑣 } ∈ 𝐸 ↔ { 𝑋 , 𝑤 } ∈ 𝐸 ) )
17 16 ralbidv ( 𝑣 = 𝑋 → ( ∀ 𝑤𝐴 { 𝑤 , 𝑣 } ∈ 𝐸 ↔ ∀ 𝑤𝐴 { 𝑋 , 𝑤 } ∈ 𝐸 ) )
18 17 rspcv ( 𝑋𝐵 → ( ∀ 𝑣𝐵𝑤𝐴 { 𝑤 , 𝑣 } ∈ 𝐸 → ∀ 𝑤𝐴 { 𝑋 , 𝑤 } ∈ 𝐸 ) )
19 12 18 syl ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → ( ∀ 𝑣𝐵𝑤𝐴 { 𝑤 , 𝑣 } ∈ 𝐸 → ∀ 𝑤𝐴 { 𝑋 , 𝑤 } ∈ 𝐸 ) )
20 3 ssrab3 𝐴𝑉
21 ssdifim ( ( 𝐴𝑉𝐵 = ( 𝑉𝐴 ) ) → 𝐴 = ( 𝑉𝐵 ) )
22 20 4 21 mp2an 𝐴 = ( 𝑉𝐵 )
23 difeq2 ( 𝐵 = { 𝑋 } → ( 𝑉𝐵 ) = ( 𝑉 ∖ { 𝑋 } ) )
24 23 adantl ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → ( 𝑉𝐵 ) = ( 𝑉 ∖ { 𝑋 } ) )
25 22 24 syl5eq ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → 𝐴 = ( 𝑉 ∖ { 𝑋 } ) )
26 25 raleqdv ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → ( ∀ 𝑤𝐴 { 𝑋 , 𝑤 } ∈ 𝐸 ↔ ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑋 } ) { 𝑋 , 𝑤 } ∈ 𝐸 ) )
27 19 26 sylibd ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → ( ∀ 𝑣𝐵𝑤𝐴 { 𝑤 , 𝑣 } ∈ 𝐸 → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑋 } ) { 𝑋 , 𝑤 } ∈ 𝐸 ) )
28 7 27 syl5bi ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → ( ∀ 𝑤𝐴𝑣𝐵 { 𝑤 , 𝑣 } ∈ 𝐸 → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑋 } ) { 𝑋 , 𝑤 } ∈ 𝐸 ) )
29 6 28 syl5com ( 𝐺 ∈ FriendGraph → ( ( 𝑋𝑉𝐵 = { 𝑋 } ) → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑋 } ) { 𝑋 , 𝑤 } ∈ 𝐸 ) )
30 29 3impib ( ( 𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝐵 = { 𝑋 } ) → ∀ 𝑤 ∈ ( 𝑉 ∖ { 𝑋 } ) { 𝑋 , 𝑤 } ∈ 𝐸 )