| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrwopreg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreg.a | ⊢ 𝐴  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 4 |  | frgrwopreg.b | ⊢ 𝐵  =  ( 𝑉  ∖  𝐴 ) | 
						
							| 5 |  | frgrwopreg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 | 1 2 3 4 5 | frgrwopreglem4 | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐵 { 𝑤 ,  𝑣 }  ∈  𝐸 ) | 
						
							| 7 |  | ralcom | ⊢ ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐵 { 𝑤 ,  𝑣 }  ∈  𝐸  ↔  ∀ 𝑣  ∈  𝐵 ∀ 𝑤  ∈  𝐴 { 𝑤 ,  𝑣 }  ∈  𝐸 ) | 
						
							| 8 |  | snidg | ⊢ ( 𝑋  ∈  𝑉  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  𝑋  ∈  { 𝑋 } ) | 
						
							| 10 |  | eleq2 | ⊢ ( 𝐵  =  { 𝑋 }  →  ( 𝑋  ∈  𝐵  ↔  𝑋  ∈  { 𝑋 } ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  ( 𝑋  ∈  𝐵  ↔  𝑋  ∈  { 𝑋 } ) ) | 
						
							| 12 | 9 11 | mpbird | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  𝑋  ∈  𝐵 ) | 
						
							| 13 |  | preq2 | ⊢ ( 𝑣  =  𝑋  →  { 𝑤 ,  𝑣 }  =  { 𝑤 ,  𝑋 } ) | 
						
							| 14 |  | prcom | ⊢ { 𝑤 ,  𝑋 }  =  { 𝑋 ,  𝑤 } | 
						
							| 15 | 13 14 | eqtrdi | ⊢ ( 𝑣  =  𝑋  →  { 𝑤 ,  𝑣 }  =  { 𝑋 ,  𝑤 } ) | 
						
							| 16 | 15 | eleq1d | ⊢ ( 𝑣  =  𝑋  →  ( { 𝑤 ,  𝑣 }  ∈  𝐸  ↔  { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 17 | 16 | ralbidv | ⊢ ( 𝑣  =  𝑋  →  ( ∀ 𝑤  ∈  𝐴 { 𝑤 ,  𝑣 }  ∈  𝐸  ↔  ∀ 𝑤  ∈  𝐴 { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 18 | 17 | rspcv | ⊢ ( 𝑋  ∈  𝐵  →  ( ∀ 𝑣  ∈  𝐵 ∀ 𝑤  ∈  𝐴 { 𝑤 ,  𝑣 }  ∈  𝐸  →  ∀ 𝑤  ∈  𝐴 { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 19 | 12 18 | syl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  ( ∀ 𝑣  ∈  𝐵 ∀ 𝑤  ∈  𝐴 { 𝑤 ,  𝑣 }  ∈  𝐸  →  ∀ 𝑤  ∈  𝐴 { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 20 | 3 | ssrab3 | ⊢ 𝐴  ⊆  𝑉 | 
						
							| 21 |  | ssdifim | ⊢ ( ( 𝐴  ⊆  𝑉  ∧  𝐵  =  ( 𝑉  ∖  𝐴 ) )  →  𝐴  =  ( 𝑉  ∖  𝐵 ) ) | 
						
							| 22 | 20 4 21 | mp2an | ⊢ 𝐴  =  ( 𝑉  ∖  𝐵 ) | 
						
							| 23 |  | difeq2 | ⊢ ( 𝐵  =  { 𝑋 }  →  ( 𝑉  ∖  𝐵 )  =  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  ( 𝑉  ∖  𝐵 )  =  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 25 | 22 24 | eqtrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  𝐴  =  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 26 | 25 | raleqdv | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  ( ∀ 𝑤  ∈  𝐴 { 𝑋 ,  𝑤 }  ∈  𝐸  ↔  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 27 | 19 26 | sylibd | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  ( ∀ 𝑣  ∈  𝐵 ∀ 𝑤  ∈  𝐴 { 𝑤 ,  𝑣 }  ∈  𝐸  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 28 | 7 27 | biimtrid | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  ( ∀ 𝑤  ∈  𝐴 ∀ 𝑣  ∈  𝐵 { 𝑤 ,  𝑣 }  ∈  𝐸  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 29 | 6 28 | syl5com | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) ) | 
						
							| 30 | 29 | 3impib | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑋  ∈  𝑉  ∧  𝐵  =  { 𝑋 } )  →  ∀ 𝑤  ∈  ( 𝑉  ∖  { 𝑋 } ) { 𝑋 ,  𝑤 }  ∈  𝐸 ) |