Metamath Proof Explorer


Theorem frgrwopreglem4

Description: Lemma 4 for frgrwopreg . In a friendship graph each vertex with degree K is connected with any vertex with degree other than K . This corresponds to statement 4 in Huneke p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 4-Feb-2022)

Ref Expression
Hypotheses frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion frgrwopreglem4 ( 𝐺 ∈ FriendGraph → ∀ 𝑎𝐴𝑏𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 )

Proof

Step Hyp Ref Expression
1 frgrwopreg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrwopreg.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 frgrwopreg.a 𝐴 = { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 }
4 frgrwopreg.b 𝐵 = ( 𝑉𝐴 )
5 frgrwopreg.e 𝐸 = ( Edg ‘ 𝐺 )
6 simpl ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑎𝐴𝑏𝐵 ) ) → 𝐺 ∈ FriendGraph )
7 elrabi ( 𝑎 ∈ { 𝑥𝑉 ∣ ( 𝐷𝑥 ) = 𝐾 } → 𝑎𝑉 )
8 7 3 eleq2s ( 𝑎𝐴𝑎𝑉 )
9 eldifi ( 𝑏 ∈ ( 𝑉𝐴 ) → 𝑏𝑉 )
10 9 4 eleq2s ( 𝑏𝐵𝑏𝑉 )
11 8 10 anim12i ( ( 𝑎𝐴𝑏𝐵 ) → ( 𝑎𝑉𝑏𝑉 ) )
12 11 adantl ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝑎𝑉𝑏𝑉 ) )
13 1 2 3 4 frgrwopreglem3 ( ( 𝑎𝐴𝑏𝐵 ) → ( 𝐷𝑎 ) ≠ ( 𝐷𝑏 ) )
14 13 adantl ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑎𝐴𝑏𝐵 ) ) → ( 𝐷𝑎 ) ≠ ( 𝐷𝑏 ) )
15 1 2 5 frgrwopreglem4a ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑎𝑉𝑏𝑉 ) ∧ ( 𝐷𝑎 ) ≠ ( 𝐷𝑏 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 )
16 6 12 14 15 syl3anc ( ( 𝐺 ∈ FriendGraph ∧ ( 𝑎𝐴𝑏𝐵 ) ) → { 𝑎 , 𝑏 } ∈ 𝐸 )
17 16 ralrimivva ( 𝐺 ∈ FriendGraph → ∀ 𝑎𝐴𝑏𝐵 { 𝑎 , 𝑏 } ∈ 𝐸 )