| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrwopreg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrwopreg.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreg.a | ⊢ 𝐴  =  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 } | 
						
							| 4 |  | frgrwopreg.b | ⊢ 𝐵  =  ( 𝑉  ∖  𝐴 ) | 
						
							| 5 |  | frgrwopreg.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 7 |  | elrabi | ⊢ ( 𝑎  ∈  { 𝑥  ∈  𝑉  ∣  ( 𝐷 ‘ 𝑥 )  =  𝐾 }  →  𝑎  ∈  𝑉 ) | 
						
							| 8 | 7 3 | eleq2s | ⊢ ( 𝑎  ∈  𝐴  →  𝑎  ∈  𝑉 ) | 
						
							| 9 |  | eldifi | ⊢ ( 𝑏  ∈  ( 𝑉  ∖  𝐴 )  →  𝑏  ∈  𝑉 ) | 
						
							| 10 | 9 4 | eleq2s | ⊢ ( 𝑏  ∈  𝐵  →  𝑏  ∈  𝑉 ) | 
						
							| 11 | 8 10 | anim12i | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 ) ) | 
						
							| 13 | 1 2 3 4 | frgrwopreglem3 | ⊢ ( ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 )  →  ( 𝐷 ‘ 𝑎 )  ≠  ( 𝐷 ‘ 𝑏 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  ( 𝐷 ‘ 𝑎 )  ≠  ( 𝐷 ‘ 𝑏 ) ) | 
						
							| 15 | 1 2 5 | frgrwopreglem4a | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑎  ∈  𝑉  ∧  𝑏  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝑎 )  ≠  ( 𝐷 ‘ 𝑏 ) )  →  { 𝑎 ,  𝑏 }  ∈  𝐸 ) | 
						
							| 16 | 6 12 14 15 | syl3anc | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑎  ∈  𝐴  ∧  𝑏  ∈  𝐵 ) )  →  { 𝑎 ,  𝑏 }  ∈  𝐸 ) | 
						
							| 17 | 16 | ralrimivva | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑎  ∈  𝐴 ∀ 𝑏  ∈  𝐵 { 𝑎 ,  𝑏 }  ∈  𝐸 ) |