| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrncvvdeq.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | frgrwopreglem4a.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑋  =  𝑌  →  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 ) ) | 
						
							| 5 | 4 | a1i | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  =  𝑌  →  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 ) ) ) | 
						
							| 6 | 5 | necon3d | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  𝑋  ≠  𝑌 ) ) | 
						
							| 7 | 6 | imp | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  𝑋  ≠  𝑌 ) | 
						
							| 8 | 7 | 3adant1 | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  𝑋  ≠  𝑌 ) | 
						
							| 9 | 1 2 | frgrncvvdeq | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 ) ) ) | 
						
							| 10 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝐺  NeighbVtx  𝑥 )  =  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 11 |  | neleq2 | ⊢ ( ( 𝐺  NeighbVtx  𝑥 )  =  ( 𝐺  NeighbVtx  𝑋 )  →  ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  ↔  𝑦  ∉  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝑥  =  𝑋  →  ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  ↔  𝑦  ∉  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 13 |  | fveqeq2 | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 )  ↔  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑦 ) ) ) | 
						
							| 14 | 12 13 | imbi12d | ⊢ ( 𝑥  =  𝑋  →  ( ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 ) )  ↔  ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑋 )  →  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑦 ) ) ) ) | 
						
							| 15 |  | neleq1 | ⊢ ( 𝑦  =  𝑌  →  ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑋 )  ↔  𝑌  ∉  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑦  =  𝑌  →  ( 𝐷 ‘ 𝑦 )  =  ( 𝐷 ‘ 𝑌 ) ) | 
						
							| 17 | 16 | eqeq2d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑦 )  ↔  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 ) ) ) | 
						
							| 18 | 15 17 | imbi12d | ⊢ ( 𝑦  =  𝑌  →  ( ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑋 )  →  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑦 ) )  ↔  ( 𝑌  ∉  ( 𝐺  NeighbVtx  𝑋 )  →  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 ) ) ) ) | 
						
							| 19 |  | simpll | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  𝑋  ∈  𝑉 ) | 
						
							| 20 |  | sneq | ⊢ ( 𝑥  =  𝑋  →  { 𝑥 }  =  { 𝑋 } ) | 
						
							| 21 | 20 | difeq2d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑉  ∖  { 𝑥 } )  =  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  ∧  𝑥  =  𝑋 )  →  ( 𝑉  ∖  { 𝑥 } )  =  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 23 |  | simpr | ⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  𝑌  ∈  𝑉 ) | 
						
							| 24 |  | necom | ⊢ ( 𝑋  ≠  𝑌  ↔  𝑌  ≠  𝑋 ) | 
						
							| 25 | 24 | biimpi | ⊢ ( 𝑋  ≠  𝑌  →  𝑌  ≠  𝑋 ) | 
						
							| 26 | 23 25 | anim12i | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌  ∈  𝑉  ∧  𝑌  ≠  𝑋 ) ) | 
						
							| 27 |  | eldifsn | ⊢ ( 𝑌  ∈  ( 𝑉  ∖  { 𝑋 } )  ↔  ( 𝑌  ∈  𝑉  ∧  𝑌  ≠  𝑋 ) ) | 
						
							| 28 | 26 27 | sylibr | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  𝑌  ∈  ( 𝑉  ∖  { 𝑋 } ) ) | 
						
							| 29 | 14 18 19 22 28 | rspc2vd | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 ) )  →  ( 𝑌  ∉  ( 𝐺  NeighbVtx  𝑋 )  →  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 ) ) ) ) | 
						
							| 30 |  | nnel | ⊢ ( ¬  𝑌  ∉  ( 𝐺  NeighbVtx  𝑋 )  ↔  𝑌  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 31 |  | nbgrsym | ⊢ ( 𝑌  ∈  ( 𝐺  NeighbVtx  𝑋 )  ↔  𝑋  ∈  ( 𝐺  NeighbVtx  𝑌 ) ) | 
						
							| 32 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 33 | 3 | nbusgreledg | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑋  ∈  ( 𝐺  NeighbVtx  𝑌 )  ↔  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑋  ∈  ( 𝐺  NeighbVtx  𝑌 )  ↔  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) | 
						
							| 35 | 34 | biimpd | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑋  ∈  ( 𝐺  NeighbVtx  𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) | 
						
							| 36 | 31 35 | biimtrid | ⊢ ( 𝐺  ∈   FriendGraph   →  ( 𝑌  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑌  ∈  ( 𝐺  NeighbVtx  𝑋 ) )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) | 
						
							| 38 | 37 | a1d | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  𝑌  ∈  ( 𝐺  NeighbVtx  𝑋 ) )  →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) | 
						
							| 39 | 38 | expcom | ⊢ ( 𝑌  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) | 
						
							| 40 | 39 | a1d | ⊢ ( 𝑌  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 41 | 30 40 | sylbi | ⊢ ( ¬  𝑌  ∉  ( 𝐺  NeighbVtx  𝑋 )  →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 42 |  | eqneqall | ⊢ ( ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 )  →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) | 
						
							| 43 | 42 | 2a1d | ⊢ ( ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 )  →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 44 | 41 43 | ja | ⊢ ( ( 𝑌  ∉  ( 𝐺  NeighbVtx  𝑋 )  →  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 ) )  →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 45 | 44 | com12 | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑌  ∉  ( 𝐺  NeighbVtx  𝑋 )  →  ( 𝐷 ‘ 𝑋 )  =  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 46 | 29 45 | syld | ⊢ ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 47 | 46 | com3l | ⊢ ( ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 ) )  →  ( 𝐺  ∈   FriendGraph   →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 48 | 9 47 | mpcom | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) | 
						
							| 49 | 48 | expd | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( 𝑋  ≠  𝑌  →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 50 | 49 | com34 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  →  ( ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 )  →  ( 𝑋  ≠  𝑌  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) ) ) | 
						
							| 51 | 50 | 3imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  ( 𝑋  ≠  𝑌  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) ) | 
						
							| 52 | 8 51 | mpd | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑋  ∈  𝑉  ∧  𝑌  ∈  𝑉 )  ∧  ( 𝐷 ‘ 𝑋 )  ≠  ( 𝐷 ‘ 𝑌 ) )  →  { 𝑋 ,  𝑌 }  ∈  𝐸 ) |