| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrncvvdeq.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | frgrwopreglem4a.e |  |-  E = ( Edg ` G ) | 
						
							| 4 |  | fveq2 |  |-  ( X = Y -> ( D ` X ) = ( D ` Y ) ) | 
						
							| 5 | 4 | a1i |  |-  ( ( X e. V /\ Y e. V ) -> ( X = Y -> ( D ` X ) = ( D ` Y ) ) ) | 
						
							| 6 | 5 | necon3d |  |-  ( ( X e. V /\ Y e. V ) -> ( ( D ` X ) =/= ( D ` Y ) -> X =/= Y ) ) | 
						
							| 7 | 6 | imp |  |-  ( ( ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> X =/= Y ) | 
						
							| 8 | 7 | 3adant1 |  |-  ( ( G e. FriendGraph /\ ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> X =/= Y ) | 
						
							| 9 | 1 2 | frgrncvvdeq |  |-  ( G e. FriendGraph -> A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) ) | 
						
							| 10 |  | oveq2 |  |-  ( x = X -> ( G NeighbVtx x ) = ( G NeighbVtx X ) ) | 
						
							| 11 |  | neleq2 |  |-  ( ( G NeighbVtx x ) = ( G NeighbVtx X ) -> ( y e/ ( G NeighbVtx x ) <-> y e/ ( G NeighbVtx X ) ) ) | 
						
							| 12 | 10 11 | syl |  |-  ( x = X -> ( y e/ ( G NeighbVtx x ) <-> y e/ ( G NeighbVtx X ) ) ) | 
						
							| 13 |  | fveqeq2 |  |-  ( x = X -> ( ( D ` x ) = ( D ` y ) <-> ( D ` X ) = ( D ` y ) ) ) | 
						
							| 14 | 12 13 | imbi12d |  |-  ( x = X -> ( ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) <-> ( y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` y ) ) ) ) | 
						
							| 15 |  | neleq1 |  |-  ( y = Y -> ( y e/ ( G NeighbVtx X ) <-> Y e/ ( G NeighbVtx X ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( y = Y -> ( D ` y ) = ( D ` Y ) ) | 
						
							| 17 | 16 | eqeq2d |  |-  ( y = Y -> ( ( D ` X ) = ( D ` y ) <-> ( D ` X ) = ( D ` Y ) ) ) | 
						
							| 18 | 15 17 | imbi12d |  |-  ( y = Y -> ( ( y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` y ) ) <-> ( Y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` Y ) ) ) ) | 
						
							| 19 |  | simpll |  |-  ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> X e. V ) | 
						
							| 20 |  | sneq |  |-  ( x = X -> { x } = { X } ) | 
						
							| 21 | 20 | difeq2d |  |-  ( x = X -> ( V \ { x } ) = ( V \ { X } ) ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) /\ x = X ) -> ( V \ { x } ) = ( V \ { X } ) ) | 
						
							| 23 |  | simpr |  |-  ( ( X e. V /\ Y e. V ) -> Y e. V ) | 
						
							| 24 |  | necom |  |-  ( X =/= Y <-> Y =/= X ) | 
						
							| 25 | 24 | biimpi |  |-  ( X =/= Y -> Y =/= X ) | 
						
							| 26 | 23 25 | anim12i |  |-  ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( Y e. V /\ Y =/= X ) ) | 
						
							| 27 |  | eldifsn |  |-  ( Y e. ( V \ { X } ) <-> ( Y e. V /\ Y =/= X ) ) | 
						
							| 28 | 26 27 | sylibr |  |-  ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> Y e. ( V \ { X } ) ) | 
						
							| 29 | 14 18 19 22 28 | rspc2vd |  |-  ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) -> ( Y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` Y ) ) ) ) | 
						
							| 30 |  | nnel |  |-  ( -. Y e/ ( G NeighbVtx X ) <-> Y e. ( G NeighbVtx X ) ) | 
						
							| 31 |  | nbgrsym |  |-  ( Y e. ( G NeighbVtx X ) <-> X e. ( G NeighbVtx Y ) ) | 
						
							| 32 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 33 | 3 | nbusgreledg |  |-  ( G e. USGraph -> ( X e. ( G NeighbVtx Y ) <-> { X , Y } e. E ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( G e. FriendGraph -> ( X e. ( G NeighbVtx Y ) <-> { X , Y } e. E ) ) | 
						
							| 35 | 34 | biimpd |  |-  ( G e. FriendGraph -> ( X e. ( G NeighbVtx Y ) -> { X , Y } e. E ) ) | 
						
							| 36 | 31 35 | biimtrid |  |-  ( G e. FriendGraph -> ( Y e. ( G NeighbVtx X ) -> { X , Y } e. E ) ) | 
						
							| 37 | 36 | imp |  |-  ( ( G e. FriendGraph /\ Y e. ( G NeighbVtx X ) ) -> { X , Y } e. E ) | 
						
							| 38 | 37 | a1d |  |-  ( ( G e. FriendGraph /\ Y e. ( G NeighbVtx X ) ) -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) | 
						
							| 39 | 38 | expcom |  |-  ( Y e. ( G NeighbVtx X ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) | 
						
							| 40 | 39 | a1d |  |-  ( Y e. ( G NeighbVtx X ) -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) | 
						
							| 41 | 30 40 | sylbi |  |-  ( -. Y e/ ( G NeighbVtx X ) -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) | 
						
							| 42 |  | eqneqall |  |-  ( ( D ` X ) = ( D ` Y ) -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) | 
						
							| 43 | 42 | 2a1d |  |-  ( ( D ` X ) = ( D ` Y ) -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) | 
						
							| 44 | 41 43 | ja |  |-  ( ( Y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` Y ) ) -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) | 
						
							| 45 | 44 | com12 |  |-  ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( ( Y e/ ( G NeighbVtx X ) -> ( D ` X ) = ( D ` Y ) ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) | 
						
							| 46 | 29 45 | syld |  |-  ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) -> ( G e. FriendGraph -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) | 
						
							| 47 | 46 | com3l |  |-  ( A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) -> ( G e. FriendGraph -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) | 
						
							| 48 | 9 47 | mpcom |  |-  ( G e. FriendGraph -> ( ( ( X e. V /\ Y e. V ) /\ X =/= Y ) -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) | 
						
							| 49 | 48 | expd |  |-  ( G e. FriendGraph -> ( ( X e. V /\ Y e. V ) -> ( X =/= Y -> ( ( D ` X ) =/= ( D ` Y ) -> { X , Y } e. E ) ) ) ) | 
						
							| 50 | 49 | com34 |  |-  ( G e. FriendGraph -> ( ( X e. V /\ Y e. V ) -> ( ( D ` X ) =/= ( D ` Y ) -> ( X =/= Y -> { X , Y } e. E ) ) ) ) | 
						
							| 51 | 50 | 3imp |  |-  ( ( G e. FriendGraph /\ ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> ( X =/= Y -> { X , Y } e. E ) ) | 
						
							| 52 | 8 51 | mpd |  |-  ( ( G e. FriendGraph /\ ( X e. V /\ Y e. V ) /\ ( D ` X ) =/= ( D ` Y ) ) -> { X , Y } e. E ) |