| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrncvvdeq.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | ovexd |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( G NeighbVtx x ) e. _V ) | 
						
							| 4 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 5 |  | eqid |  |-  ( G NeighbVtx x ) = ( G NeighbVtx x ) | 
						
							| 6 |  | eqid |  |-  ( G NeighbVtx y ) = ( G NeighbVtx y ) | 
						
							| 7 |  | simpl |  |-  ( ( x e. V /\ y e. ( V \ { x } ) ) -> x e. V ) | 
						
							| 8 | 7 | ad2antlr |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> x e. V ) | 
						
							| 9 |  | eldifi |  |-  ( y e. ( V \ { x } ) -> y e. V ) | 
						
							| 10 | 9 | adantl |  |-  ( ( x e. V /\ y e. ( V \ { x } ) ) -> y e. V ) | 
						
							| 11 | 10 | ad2antlr |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> y e. V ) | 
						
							| 12 |  | eldif |  |-  ( y e. ( V \ { x } ) <-> ( y e. V /\ -. y e. { x } ) ) | 
						
							| 13 |  | velsn |  |-  ( y e. { x } <-> y = x ) | 
						
							| 14 | 13 | biimpri |  |-  ( y = x -> y e. { x } ) | 
						
							| 15 | 14 | equcoms |  |-  ( x = y -> y e. { x } ) | 
						
							| 16 | 15 | necon3bi |  |-  ( -. y e. { x } -> x =/= y ) | 
						
							| 17 | 12 16 | simplbiim |  |-  ( y e. ( V \ { x } ) -> x =/= y ) | 
						
							| 18 | 17 | adantl |  |-  ( ( x e. V /\ y e. ( V \ { x } ) ) -> x =/= y ) | 
						
							| 19 | 18 | ad2antlr |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> x =/= y ) | 
						
							| 20 |  | simpr |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> y e/ ( G NeighbVtx x ) ) | 
						
							| 21 |  | simpl |  |-  ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) -> G e. FriendGraph ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> G e. FriendGraph ) | 
						
							| 23 |  | eqid |  |-  ( a e. ( G NeighbVtx x ) |-> ( iota_ b e. ( G NeighbVtx y ) { a , b } e. ( Edg ` G ) ) ) = ( a e. ( G NeighbVtx x ) |-> ( iota_ b e. ( G NeighbVtx y ) { a , b } e. ( Edg ` G ) ) ) | 
						
							| 24 | 1 4 5 6 8 11 19 20 22 23 | frgrncvvdeqlem10 |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( a e. ( G NeighbVtx x ) |-> ( iota_ b e. ( G NeighbVtx y ) { a , b } e. ( Edg ` G ) ) ) : ( G NeighbVtx x ) -1-1-onto-> ( G NeighbVtx y ) ) | 
						
							| 25 | 3 24 | hasheqf1od |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( # ` ( G NeighbVtx x ) ) = ( # ` ( G NeighbVtx y ) ) ) | 
						
							| 26 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 27 | 26 7 | anim12i |  |-  ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) -> ( G e. USGraph /\ x e. V ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( G e. USGraph /\ x e. V ) ) | 
						
							| 29 | 1 | hashnbusgrvd |  |-  ( ( G e. USGraph /\ x e. V ) -> ( # ` ( G NeighbVtx x ) ) = ( ( VtxDeg ` G ) ` x ) ) | 
						
							| 30 | 28 29 | syl |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( # ` ( G NeighbVtx x ) ) = ( ( VtxDeg ` G ) ` x ) ) | 
						
							| 31 | 26 10 | anim12i |  |-  ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) -> ( G e. USGraph /\ y e. V ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( G e. USGraph /\ y e. V ) ) | 
						
							| 33 | 1 | hashnbusgrvd |  |-  ( ( G e. USGraph /\ y e. V ) -> ( # ` ( G NeighbVtx y ) ) = ( ( VtxDeg ` G ) ` y ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( # ` ( G NeighbVtx y ) ) = ( ( VtxDeg ` G ) ` y ) ) | 
						
							| 35 | 25 30 34 | 3eqtr3d |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` y ) ) | 
						
							| 36 | 2 | fveq1i |  |-  ( D ` x ) = ( ( VtxDeg ` G ) ` x ) | 
						
							| 37 | 2 | fveq1i |  |-  ( D ` y ) = ( ( VtxDeg ` G ) ` y ) | 
						
							| 38 | 35 36 37 | 3eqtr4g |  |-  ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( D ` x ) = ( D ` y ) ) | 
						
							| 39 | 38 | ex |  |-  ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) -> ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) ) | 
						
							| 40 | 39 | ralrimivva |  |-  ( G e. FriendGraph -> A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) ) |