| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrncvvdeq.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | ovexd | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( 𝐺  NeighbVtx  𝑥 )  ∈  V ) | 
						
							| 4 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( 𝐺  NeighbVtx  𝑥 )  =  ( 𝐺  NeighbVtx  𝑥 ) | 
						
							| 6 |  | eqid | ⊢ ( 𝐺  NeighbVtx  𝑦 )  =  ( 𝐺  NeighbVtx  𝑦 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 8 | 7 | ad2antlr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  𝑥  ∈  𝑉 ) | 
						
							| 9 |  | eldifi | ⊢ ( 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } )  →  𝑦  ∈  𝑉 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 11 | 10 | ad2antlr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 12 |  | eldif | ⊢ ( 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } )  ↔  ( 𝑦  ∈  𝑉  ∧  ¬  𝑦  ∈  { 𝑥 } ) ) | 
						
							| 13 |  | velsn | ⊢ ( 𝑦  ∈  { 𝑥 }  ↔  𝑦  =  𝑥 ) | 
						
							| 14 | 13 | biimpri | ⊢ ( 𝑦  =  𝑥  →  𝑦  ∈  { 𝑥 } ) | 
						
							| 15 | 14 | equcoms | ⊢ ( 𝑥  =  𝑦  →  𝑦  ∈  { 𝑥 } ) | 
						
							| 16 | 15 | necon3bi | ⊢ ( ¬  𝑦  ∈  { 𝑥 }  →  𝑥  ≠  𝑦 ) | 
						
							| 17 | 12 16 | simplbiim | ⊢ ( 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } )  →  𝑥  ≠  𝑦 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) )  →  𝑥  ≠  𝑦 ) | 
						
							| 19 | 18 | ad2antlr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  𝑥  ≠  𝑦 ) | 
						
							| 20 |  | simpr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) ) | 
						
							| 21 |  | simpl | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 23 |  | eqid | ⊢ ( 𝑎  ∈  ( 𝐺  NeighbVtx  𝑥 )  ↦  ( ℩ 𝑏  ∈  ( 𝐺  NeighbVtx  𝑦 ) { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 ) ) )  =  ( 𝑎  ∈  ( 𝐺  NeighbVtx  𝑥 )  ↦  ( ℩ 𝑏  ∈  ( 𝐺  NeighbVtx  𝑦 ) { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 24 | 1 4 5 6 8 11 19 20 22 23 | frgrncvvdeqlem10 | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( 𝑎  ∈  ( 𝐺  NeighbVtx  𝑥 )  ↦  ( ℩ 𝑏  ∈  ( 𝐺  NeighbVtx  𝑦 ) { 𝑎 ,  𝑏 }  ∈  ( Edg ‘ 𝐺 ) ) ) : ( 𝐺  NeighbVtx  𝑥 ) –1-1-onto→ ( 𝐺  NeighbVtx  𝑦 ) ) | 
						
							| 25 | 3 24 | hasheqf1od | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑥 ) )  =  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑦 ) ) ) | 
						
							| 26 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 27 | 26 7 | anim12i | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  →  ( 𝐺  ∈  USGraph  ∧  𝑥  ∈  𝑉 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( 𝐺  ∈  USGraph  ∧  𝑥  ∈  𝑉 ) ) | 
						
							| 29 | 1 | hashnbusgrvd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑥  ∈  𝑉 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑥 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 30 | 28 29 | syl | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑥 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) ) | 
						
							| 31 | 26 10 | anim12i | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  →  ( 𝐺  ∈  USGraph  ∧  𝑦  ∈  𝑉 ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( 𝐺  ∈  USGraph  ∧  𝑦  ∈  𝑉 ) ) | 
						
							| 33 | 1 | hashnbusgrvd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑦  ∈  𝑉 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑦 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑦 ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑦 ) )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑦 ) ) | 
						
							| 35 | 25 30 34 | 3eqtr3d | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑦 ) ) | 
						
							| 36 | 2 | fveq1i | ⊢ ( 𝐷 ‘ 𝑥 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑥 ) | 
						
							| 37 | 2 | fveq1i | ⊢ ( 𝐷 ‘ 𝑦 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑦 ) | 
						
							| 38 | 35 36 37 | 3eqtr4g | ⊢ ( ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  ∧  𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 ) )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 ) ) | 
						
							| 39 | 38 | ex | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ) )  →  ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 ) ) ) | 
						
							| 40 | 39 | ralrimivva | ⊢ ( 𝐺  ∈   FriendGraph   →  ∀ 𝑥  ∈  𝑉 ∀ 𝑦  ∈  ( 𝑉  ∖  { 𝑥 } ) ( 𝑦  ∉  ( 𝐺  NeighbVtx  𝑥 )  →  ( 𝐷 ‘ 𝑥 )  =  ( 𝐷 ‘ 𝑦 ) ) ) |