Database GRAPH THEORY The Friendship Theorem Huneke's Proof of the Friendship Theorem frgrncvvdeqlem10  
				
		 
		
			
		 
		Description:   Lemma 10 for frgrncvvdeq  .  (Contributed by Alexander van der Vekens , 24-Dec-2017)   (Revised by AV , 10-May-2021)   (Proof shortened by AV , 30-Dec-2021) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						frgrncvvdeq.v1 ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
					
						frgrncvvdeq.e ⊢  𝐸   =  ( Edg ‘ 𝐺  )  
					
						frgrncvvdeq.nx ⊢  𝐷   =  ( 𝐺   NeighbVtx  𝑋  )  
					
						frgrncvvdeq.ny ⊢  𝑁   =  ( 𝐺   NeighbVtx  𝑌  )  
					
						frgrncvvdeq.x ⊢  ( 𝜑   →  𝑋   ∈  𝑉  )  
					
						frgrncvvdeq.y ⊢  ( 𝜑   →  𝑌   ∈  𝑉  )  
					
						frgrncvvdeq.ne ⊢  ( 𝜑   →  𝑋   ≠  𝑌  )  
					
						frgrncvvdeq.xy ⊢  ( 𝜑   →  𝑌   ∉  𝐷  )  
					
						frgrncvvdeq.f ⊢  ( 𝜑   →  𝐺   ∈   FriendGraph  )  
					
						frgrncvvdeq.a ⊢  𝐴   =  ( 𝑥   ∈  𝐷   ↦  ( ℩  𝑦   ∈  𝑁  { 𝑥  ,  𝑦  }  ∈  𝐸  ) )  
				
					Assertion 
					frgrncvvdeqlem10 ⊢   ( 𝜑   →  𝐴  : 𝐷  –1-1 -onto → 𝑁  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							frgrncvvdeq.v1 ⊢  𝑉   =  ( Vtx ‘ 𝐺  )  
						
							2 
								
							 
							frgrncvvdeq.e ⊢  𝐸   =  ( Edg ‘ 𝐺  )  
						
							3 
								
							 
							frgrncvvdeq.nx ⊢  𝐷   =  ( 𝐺   NeighbVtx  𝑋  )  
						
							4 
								
							 
							frgrncvvdeq.ny ⊢  𝑁   =  ( 𝐺   NeighbVtx  𝑌  )  
						
							5 
								
							 
							frgrncvvdeq.x ⊢  ( 𝜑   →  𝑋   ∈  𝑉  )  
						
							6 
								
							 
							frgrncvvdeq.y ⊢  ( 𝜑   →  𝑌   ∈  𝑉  )  
						
							7 
								
							 
							frgrncvvdeq.ne ⊢  ( 𝜑   →  𝑋   ≠  𝑌  )  
						
							8 
								
							 
							frgrncvvdeq.xy ⊢  ( 𝜑   →  𝑌   ∉  𝐷  )  
						
							9 
								
							 
							frgrncvvdeq.f ⊢  ( 𝜑   →  𝐺   ∈   FriendGraph  )  
						
							10 
								
							 
							frgrncvvdeq.a ⊢  𝐴   =  ( 𝑥   ∈  𝐷   ↦  ( ℩  𝑦   ∈  𝑁  { 𝑥  ,  𝑦  }  ∈  𝐸  ) )  
						
							11 
								1  2  3  4  5  6  7  8  9  10 
							 
							frgrncvvdeqlem8 ⊢  ( 𝜑   →  𝐴  : 𝐷  –1-1 → 𝑁  )  
						
							12 
								1  2  3  4  5  6  7  8  9  10 
							 
							frgrncvvdeqlem9 ⊢  ( 𝜑   →  𝐴  : 𝐷  –onto → 𝑁  )  
						
							13 
								
							 
							df-f1o ⊢  ( 𝐴  : 𝐷  –1-1 -onto → 𝑁   ↔  ( 𝐴  : 𝐷  –1-1 → 𝑁   ∧  𝐴  : 𝐷  –onto → 𝑁  ) )  
						
							14 
								11  12  13 
							 
							sylanbrc ⊢  ( 𝜑   →  𝐴  : 𝐷  –1-1 -onto → 𝑁  )