Description: Lemma 10 for frgrncvvdeq . (Contributed by Alexander van der Vekens, 24-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 30-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frgrncvvdeq.v1 | |- V = ( Vtx ` G ) | |
| frgrncvvdeq.e | |- E = ( Edg ` G ) | ||
| frgrncvvdeq.nx | |- D = ( G NeighbVtx X ) | ||
| frgrncvvdeq.ny | |- N = ( G NeighbVtx Y ) | ||
| frgrncvvdeq.x | |- ( ph -> X e. V ) | ||
| frgrncvvdeq.y | |- ( ph -> Y e. V ) | ||
| frgrncvvdeq.ne | |- ( ph -> X =/= Y ) | ||
| frgrncvvdeq.xy | |- ( ph -> Y e/ D ) | ||
| frgrncvvdeq.f | |- ( ph -> G e. FriendGraph ) | ||
| frgrncvvdeq.a | |- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) | ||
| Assertion | frgrncvvdeqlem10 | |- ( ph -> A : D -1-1-onto-> N ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frgrncvvdeq.v1 | |- V = ( Vtx ` G ) | |
| 2 | frgrncvvdeq.e | |- E = ( Edg ` G ) | |
| 3 | frgrncvvdeq.nx | |- D = ( G NeighbVtx X ) | |
| 4 | frgrncvvdeq.ny | |- N = ( G NeighbVtx Y ) | |
| 5 | frgrncvvdeq.x | |- ( ph -> X e. V ) | |
| 6 | frgrncvvdeq.y | |- ( ph -> Y e. V ) | |
| 7 | frgrncvvdeq.ne | |- ( ph -> X =/= Y ) | |
| 8 | frgrncvvdeq.xy | |- ( ph -> Y e/ D ) | |
| 9 | frgrncvvdeq.f | |- ( ph -> G e. FriendGraph ) | |
| 10 | frgrncvvdeq.a |  |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) | |
| 11 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem8 | |- ( ph -> A : D -1-1-> N ) | 
| 12 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem9 | |- ( ph -> A : D -onto-> N ) | 
| 13 | df-f1o | |- ( A : D -1-1-onto-> N <-> ( A : D -1-1-> N /\ A : D -onto-> N ) ) | |
| 14 | 11 12 13 | sylanbrc | |- ( ph -> A : D -1-1-onto-> N ) |