| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrncvvdeq.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | frgrncvvdeq.nx |  |-  D = ( G NeighbVtx X ) | 
						
							| 4 |  | frgrncvvdeq.ny |  |-  N = ( G NeighbVtx Y ) | 
						
							| 5 |  | frgrncvvdeq.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | frgrncvvdeq.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | frgrncvvdeq.ne |  |-  ( ph -> X =/= Y ) | 
						
							| 8 |  | frgrncvvdeq.xy |  |-  ( ph -> Y e/ D ) | 
						
							| 9 |  | frgrncvvdeq.f |  |-  ( ph -> G e. FriendGraph ) | 
						
							| 10 |  | frgrncvvdeq.a |  |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem4 |  |-  ( ph -> A : D --> N ) | 
						
							| 12 | 9 | adantr |  |-  ( ( ph /\ n e. N ) -> G e. FriendGraph ) | 
						
							| 13 | 4 | eleq2i |  |-  ( n e. N <-> n e. ( G NeighbVtx Y ) ) | 
						
							| 14 | 1 | nbgrisvtx |  |-  ( n e. ( G NeighbVtx Y ) -> n e. V ) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( n e. ( G NeighbVtx Y ) -> n e. V ) ) | 
						
							| 16 | 13 15 | biimtrid |  |-  ( ph -> ( n e. N -> n e. V ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ph /\ n e. N ) -> n e. V ) | 
						
							| 18 | 5 | adantr |  |-  ( ( ph /\ n e. N ) -> X e. V ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem1 |  |-  ( ph -> X e/ N ) | 
						
							| 20 |  | df-nel |  |-  ( X e/ N <-> -. X e. N ) | 
						
							| 21 |  | nelelne |  |-  ( -. X e. N -> ( n e. N -> n =/= X ) ) | 
						
							| 22 | 20 21 | sylbi |  |-  ( X e/ N -> ( n e. N -> n =/= X ) ) | 
						
							| 23 | 19 22 | syl |  |-  ( ph -> ( n e. N -> n =/= X ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( ph /\ n e. N ) -> n =/= X ) | 
						
							| 25 | 17 18 24 | 3jca |  |-  ( ( ph /\ n e. N ) -> ( n e. V /\ X e. V /\ n =/= X ) ) | 
						
							| 26 | 12 25 | jca |  |-  ( ( ph /\ n e. N ) -> ( G e. FriendGraph /\ ( n e. V /\ X e. V /\ n =/= X ) ) ) | 
						
							| 27 | 1 2 | frcond2 |  |-  ( G e. FriendGraph -> ( ( n e. V /\ X e. V /\ n =/= X ) -> E! m e. V ( { n , m } e. E /\ { m , X } e. E ) ) ) | 
						
							| 28 | 27 | imp |  |-  ( ( G e. FriendGraph /\ ( n e. V /\ X e. V /\ n =/= X ) ) -> E! m e. V ( { n , m } e. E /\ { m , X } e. E ) ) | 
						
							| 29 |  | reurex |  |-  ( E! m e. V ( { n , m } e. E /\ { m , X } e. E ) -> E. m e. V ( { n , m } e. E /\ { m , X } e. E ) ) | 
						
							| 30 |  | df-rex |  |-  ( E. m e. V ( { n , m } e. E /\ { m , X } e. E ) <-> E. m ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) ) | 
						
							| 31 | 29 30 | sylib |  |-  ( E! m e. V ( { n , m } e. E /\ { m , X } e. E ) -> E. m ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) ) | 
						
							| 32 | 26 28 31 | 3syl |  |-  ( ( ph /\ n e. N ) -> E. m ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) ) | 
						
							| 33 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 34 | 2 | nbusgreledg |  |-  ( G e. USGraph -> ( m e. ( G NeighbVtx X ) <-> { m , X } e. E ) ) | 
						
							| 35 | 34 | bicomd |  |-  ( G e. USGraph -> ( { m , X } e. E <-> m e. ( G NeighbVtx X ) ) ) | 
						
							| 36 | 9 33 35 | 3syl |  |-  ( ph -> ( { m , X } e. E <-> m e. ( G NeighbVtx X ) ) ) | 
						
							| 37 | 36 | biimpa |  |-  ( ( ph /\ { m , X } e. E ) -> m e. ( G NeighbVtx X ) ) | 
						
							| 38 | 3 | eleq2i |  |-  ( m e. D <-> m e. ( G NeighbVtx X ) ) | 
						
							| 39 | 37 38 | sylibr |  |-  ( ( ph /\ { m , X } e. E ) -> m e. D ) | 
						
							| 40 | 39 | ad2ant2rl |  |-  ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> m e. D ) | 
						
							| 41 | 2 | nbusgreledg |  |-  ( G e. USGraph -> ( n e. ( G NeighbVtx m ) <-> { n , m } e. E ) ) | 
						
							| 42 | 41 | biimpar |  |-  ( ( G e. USGraph /\ { n , m } e. E ) -> n e. ( G NeighbVtx m ) ) | 
						
							| 43 | 42 | a1d |  |-  ( ( G e. USGraph /\ { n , m } e. E ) -> ( { m , X } e. E -> n e. ( G NeighbVtx m ) ) ) | 
						
							| 44 | 43 | expimpd |  |-  ( G e. USGraph -> ( ( { n , m } e. E /\ { m , X } e. E ) -> n e. ( G NeighbVtx m ) ) ) | 
						
							| 45 | 9 33 44 | 3syl |  |-  ( ph -> ( ( { n , m } e. E /\ { m , X } e. E ) -> n e. ( G NeighbVtx m ) ) ) | 
						
							| 46 | 45 | adantr |  |-  ( ( ph /\ n e. N ) -> ( ( { n , m } e. E /\ { m , X } e. E ) -> n e. ( G NeighbVtx m ) ) ) | 
						
							| 47 | 46 | imp |  |-  ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> n e. ( G NeighbVtx m ) ) | 
						
							| 48 |  | elin |  |-  ( n e. ( ( G NeighbVtx m ) i^i N ) <-> ( n e. ( G NeighbVtx m ) /\ n e. N ) ) | 
						
							| 49 |  | simpl |  |-  ( ( ph /\ { m , X } e. E ) -> ph ) | 
						
							| 50 | 49 39 | jca |  |-  ( ( ph /\ { m , X } e. E ) -> ( ph /\ m e. D ) ) | 
						
							| 51 |  | preq1 |  |-  ( x = m -> { x , y } = { m , y } ) | 
						
							| 52 | 51 | eleq1d |  |-  ( x = m -> ( { x , y } e. E <-> { m , y } e. E ) ) | 
						
							| 53 | 52 | riotabidv |  |-  ( x = m -> ( iota_ y e. N { x , y } e. E ) = ( iota_ y e. N { m , y } e. E ) ) | 
						
							| 54 | 53 | cbvmptv |  |-  ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) = ( m e. D |-> ( iota_ y e. N { m , y } e. E ) ) | 
						
							| 55 | 10 54 | eqtri |  |-  A = ( m e. D |-> ( iota_ y e. N { m , y } e. E ) ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 9 55 | frgrncvvdeqlem5 |  |-  ( ( ph /\ m e. D ) -> { ( A ` m ) } = ( ( G NeighbVtx m ) i^i N ) ) | 
						
							| 57 |  | eleq2 |  |-  ( ( ( G NeighbVtx m ) i^i N ) = { ( A ` m ) } -> ( n e. ( ( G NeighbVtx m ) i^i N ) <-> n e. { ( A ` m ) } ) ) | 
						
							| 58 | 57 | eqcoms |  |-  ( { ( A ` m ) } = ( ( G NeighbVtx m ) i^i N ) -> ( n e. ( ( G NeighbVtx m ) i^i N ) <-> n e. { ( A ` m ) } ) ) | 
						
							| 59 |  | elsni |  |-  ( n e. { ( A ` m ) } -> n = ( A ` m ) ) | 
						
							| 60 | 58 59 | biimtrdi |  |-  ( { ( A ` m ) } = ( ( G NeighbVtx m ) i^i N ) -> ( n e. ( ( G NeighbVtx m ) i^i N ) -> n = ( A ` m ) ) ) | 
						
							| 61 | 50 56 60 | 3syl |  |-  ( ( ph /\ { m , X } e. E ) -> ( n e. ( ( G NeighbVtx m ) i^i N ) -> n = ( A ` m ) ) ) | 
						
							| 62 | 61 | expcom |  |-  ( { m , X } e. E -> ( ph -> ( n e. ( ( G NeighbVtx m ) i^i N ) -> n = ( A ` m ) ) ) ) | 
						
							| 63 | 62 | com3r |  |-  ( n e. ( ( G NeighbVtx m ) i^i N ) -> ( { m , X } e. E -> ( ph -> n = ( A ` m ) ) ) ) | 
						
							| 64 | 48 63 | sylbir |  |-  ( ( n e. ( G NeighbVtx m ) /\ n e. N ) -> ( { m , X } e. E -> ( ph -> n = ( A ` m ) ) ) ) | 
						
							| 65 | 64 | ex |  |-  ( n e. ( G NeighbVtx m ) -> ( n e. N -> ( { m , X } e. E -> ( ph -> n = ( A ` m ) ) ) ) ) | 
						
							| 66 | 65 | com14 |  |-  ( ph -> ( n e. N -> ( { m , X } e. E -> ( n e. ( G NeighbVtx m ) -> n = ( A ` m ) ) ) ) ) | 
						
							| 67 | 66 | imp |  |-  ( ( ph /\ n e. N ) -> ( { m , X } e. E -> ( n e. ( G NeighbVtx m ) -> n = ( A ` m ) ) ) ) | 
						
							| 68 | 67 | adantld |  |-  ( ( ph /\ n e. N ) -> ( ( { n , m } e. E /\ { m , X } e. E ) -> ( n e. ( G NeighbVtx m ) -> n = ( A ` m ) ) ) ) | 
						
							| 69 | 68 | imp |  |-  ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> ( n e. ( G NeighbVtx m ) -> n = ( A ` m ) ) ) | 
						
							| 70 | 47 69 | mpd |  |-  ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> n = ( A ` m ) ) | 
						
							| 71 | 40 70 | jca |  |-  ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> ( m e. D /\ n = ( A ` m ) ) ) | 
						
							| 72 | 71 | ex |  |-  ( ( ph /\ n e. N ) -> ( ( { n , m } e. E /\ { m , X } e. E ) -> ( m e. D /\ n = ( A ` m ) ) ) ) | 
						
							| 73 | 72 | adantld |  |-  ( ( ph /\ n e. N ) -> ( ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> ( m e. D /\ n = ( A ` m ) ) ) ) | 
						
							| 74 | 73 | eximdv |  |-  ( ( ph /\ n e. N ) -> ( E. m ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> E. m ( m e. D /\ n = ( A ` m ) ) ) ) | 
						
							| 75 | 32 74 | mpd |  |-  ( ( ph /\ n e. N ) -> E. m ( m e. D /\ n = ( A ` m ) ) ) | 
						
							| 76 |  | df-rex |  |-  ( E. m e. D n = ( A ` m ) <-> E. m ( m e. D /\ n = ( A ` m ) ) ) | 
						
							| 77 | 75 76 | sylibr |  |-  ( ( ph /\ n e. N ) -> E. m e. D n = ( A ` m ) ) | 
						
							| 78 | 77 | ralrimiva |  |-  ( ph -> A. n e. N E. m e. D n = ( A ` m ) ) | 
						
							| 79 |  | dffo3 |  |-  ( A : D -onto-> N <-> ( A : D --> N /\ A. n e. N E. m e. D n = ( A ` m ) ) ) | 
						
							| 80 | 11 78 79 | sylanbrc |  |-  ( ph -> A : D -onto-> N ) |