| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrncvvdeq.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | frgrncvvdeq.nx | ⊢ 𝐷  =  ( 𝐺  NeighbVtx  𝑋 ) | 
						
							| 4 |  | frgrncvvdeq.ny | ⊢ 𝑁  =  ( 𝐺  NeighbVtx  𝑌 ) | 
						
							| 5 |  | frgrncvvdeq.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | frgrncvvdeq.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 |  | frgrncvvdeq.ne | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
						
							| 8 |  | frgrncvvdeq.xy | ⊢ ( 𝜑  →  𝑌  ∉  𝐷 ) | 
						
							| 9 |  | frgrncvvdeq.f | ⊢ ( 𝜑  →  𝐺  ∈   FriendGraph  ) | 
						
							| 10 |  | frgrncvvdeq.a | ⊢ 𝐴  =  ( 𝑥  ∈  𝐷  ↦  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem4 | ⊢ ( 𝜑  →  𝐴 : 𝐷 ⟶ 𝑁 ) | 
						
							| 12 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 13 | 4 | eleq2i | ⊢ ( 𝑛  ∈  𝑁  ↔  𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 ) ) | 
						
							| 14 | 1 | nbgrisvtx | ⊢ ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 )  →  𝑛  ∈  𝑉 ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 )  →  𝑛  ∈  𝑉 ) ) | 
						
							| 16 | 13 15 | biimtrid | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑁  →  𝑛  ∈  𝑉 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  𝑛  ∈  𝑉 ) | 
						
							| 18 | 5 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  𝑋  ∈  𝑉 ) | 
						
							| 19 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem1 | ⊢ ( 𝜑  →  𝑋  ∉  𝑁 ) | 
						
							| 20 |  | df-nel | ⊢ ( 𝑋  ∉  𝑁  ↔  ¬  𝑋  ∈  𝑁 ) | 
						
							| 21 |  | nelelne | ⊢ ( ¬  𝑋  ∈  𝑁  →  ( 𝑛  ∈  𝑁  →  𝑛  ≠  𝑋 ) ) | 
						
							| 22 | 20 21 | sylbi | ⊢ ( 𝑋  ∉  𝑁  →  ( 𝑛  ∈  𝑁  →  𝑛  ≠  𝑋 ) ) | 
						
							| 23 | 19 22 | syl | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑁  →  𝑛  ≠  𝑋 ) ) | 
						
							| 24 | 23 | imp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  𝑛  ≠  𝑋 ) | 
						
							| 25 | 17 18 24 | 3jca | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ( 𝑛  ∈  𝑉  ∧  𝑋  ∈  𝑉  ∧  𝑛  ≠  𝑋 ) ) | 
						
							| 26 | 12 25 | jca | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ( 𝐺  ∈   FriendGraph   ∧  ( 𝑛  ∈  𝑉  ∧  𝑋  ∈  𝑉  ∧  𝑛  ≠  𝑋 ) ) ) | 
						
							| 27 | 1 2 | frcond2 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑛  ∈  𝑉  ∧  𝑋  ∈  𝑉  ∧  𝑛  ≠  𝑋 )  →  ∃! 𝑚  ∈  𝑉 ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( 𝐺  ∈   FriendGraph   ∧  ( 𝑛  ∈  𝑉  ∧  𝑋  ∈  𝑉  ∧  𝑛  ≠  𝑋 ) )  →  ∃! 𝑚  ∈  𝑉 ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 29 |  | reurex | ⊢ ( ∃! 𝑚  ∈  𝑉 ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  ∃ 𝑚  ∈  𝑉 ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 30 |  | df-rex | ⊢ ( ∃ 𝑚  ∈  𝑉 ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  ↔  ∃ 𝑚 ( 𝑚  ∈  𝑉  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 31 | 29 30 | sylib | ⊢ ( ∃! 𝑚  ∈  𝑉 ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  ∃ 𝑚 ( 𝑚  ∈  𝑉  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 32 | 26 28 31 | 3syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ∃ 𝑚 ( 𝑚  ∈  𝑉  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) ) ) | 
						
							| 33 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 34 | 2 | nbusgreledg | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑚  ∈  ( 𝐺  NeighbVtx  𝑋 )  ↔  { 𝑚 ,  𝑋 }  ∈  𝐸 ) ) | 
						
							| 35 | 34 | bicomd | ⊢ ( 𝐺  ∈  USGraph  →  ( { 𝑚 ,  𝑋 }  ∈  𝐸  ↔  𝑚  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 36 | 9 33 35 | 3syl | ⊢ ( 𝜑  →  ( { 𝑚 ,  𝑋 }  ∈  𝐸  ↔  𝑚  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) ) | 
						
							| 37 | 36 | biimpa | ⊢ ( ( 𝜑  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  𝑚  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 38 | 3 | eleq2i | ⊢ ( 𝑚  ∈  𝐷  ↔  𝑚  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 39 | 37 38 | sylibr | ⊢ ( ( 𝜑  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  𝑚  ∈  𝐷 ) | 
						
							| 40 | 39 | ad2ant2rl | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) )  →  𝑚  ∈  𝐷 ) | 
						
							| 41 | 2 | nbusgreledg | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 )  ↔  { 𝑛 ,  𝑚 }  ∈  𝐸 ) ) | 
						
							| 42 | 41 | biimpar | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝑛 ,  𝑚 }  ∈  𝐸 )  →  𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 ) ) | 
						
							| 43 | 42 | a1d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { 𝑛 ,  𝑚 }  ∈  𝐸 )  →  ( { 𝑚 ,  𝑋 }  ∈  𝐸  →  𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 ) ) ) | 
						
							| 44 | 43 | expimpd | ⊢ ( 𝐺  ∈  USGraph  →  ( ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 ) ) ) | 
						
							| 45 | 9 33 44 | 3syl | ⊢ ( 𝜑  →  ( ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ( ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 ) ) ) | 
						
							| 47 | 46 | imp | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) )  →  𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 ) ) | 
						
							| 48 |  | elin | ⊢ ( 𝑛  ∈  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  ↔  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 )  ∧  𝑛  ∈  𝑁 ) ) | 
						
							| 49 |  | simpl | ⊢ ( ( 𝜑  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  𝜑 ) | 
						
							| 50 | 49 39 | jca | ⊢ ( ( 𝜑  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  ( 𝜑  ∧  𝑚  ∈  𝐷 ) ) | 
						
							| 51 |  | preq1 | ⊢ ( 𝑥  =  𝑚  →  { 𝑥 ,  𝑦 }  =  { 𝑚 ,  𝑦 } ) | 
						
							| 52 | 51 | eleq1d | ⊢ ( 𝑥  =  𝑚  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ↔  { 𝑚 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 53 | 52 | riotabidv | ⊢ ( 𝑥  =  𝑚  →  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 )  =  ( ℩ 𝑦  ∈  𝑁 { 𝑚 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 54 | 53 | cbvmptv | ⊢ ( 𝑥  ∈  𝐷  ↦  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) )  =  ( 𝑚  ∈  𝐷  ↦  ( ℩ 𝑦  ∈  𝑁 { 𝑚 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 55 | 10 54 | eqtri | ⊢ 𝐴  =  ( 𝑚  ∈  𝐷  ↦  ( ℩ 𝑦  ∈  𝑁 { 𝑚 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 56 | 1 2 3 4 5 6 7 8 9 55 | frgrncvvdeqlem5 | ⊢ ( ( 𝜑  ∧  𝑚  ∈  𝐷 )  →  { ( 𝐴 ‘ 𝑚 ) }  =  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 ) ) | 
						
							| 57 |  | eleq2 | ⊢ ( ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  =  { ( 𝐴 ‘ 𝑚 ) }  →  ( 𝑛  ∈  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  ↔  𝑛  ∈  { ( 𝐴 ‘ 𝑚 ) } ) ) | 
						
							| 58 | 57 | eqcoms | ⊢ ( { ( 𝐴 ‘ 𝑚 ) }  =  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  →  ( 𝑛  ∈  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  ↔  𝑛  ∈  { ( 𝐴 ‘ 𝑚 ) } ) ) | 
						
							| 59 |  | elsni | ⊢ ( 𝑛  ∈  { ( 𝐴 ‘ 𝑚 ) }  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) | 
						
							| 60 | 58 59 | biimtrdi | ⊢ ( { ( 𝐴 ‘ 𝑚 ) }  =  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  →  ( 𝑛  ∈  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) | 
						
							| 61 | 50 56 60 | 3syl | ⊢ ( ( 𝜑  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  ( 𝑛  ∈  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) | 
						
							| 62 | 61 | expcom | ⊢ ( { 𝑚 ,  𝑋 }  ∈  𝐸  →  ( 𝜑  →  ( 𝑛  ∈  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) | 
						
							| 63 | 62 | com3r | ⊢ ( 𝑛  ∈  ( ( 𝐺  NeighbVtx  𝑚 )  ∩  𝑁 )  →  ( { 𝑚 ,  𝑋 }  ∈  𝐸  →  ( 𝜑  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) | 
						
							| 64 | 48 63 | sylbir | ⊢ ( ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 )  ∧  𝑛  ∈  𝑁 )  →  ( { 𝑚 ,  𝑋 }  ∈  𝐸  →  ( 𝜑  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) | 
						
							| 65 | 64 | ex | ⊢ ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 )  →  ( 𝑛  ∈  𝑁  →  ( { 𝑚 ,  𝑋 }  ∈  𝐸  →  ( 𝜑  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) ) | 
						
							| 66 | 65 | com14 | ⊢ ( 𝜑  →  ( 𝑛  ∈  𝑁  →  ( { 𝑚 ,  𝑋 }  ∈  𝐸  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 )  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) ) | 
						
							| 67 | 66 | imp | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ( { 𝑚 ,  𝑋 }  ∈  𝐸  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 )  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) | 
						
							| 68 | 67 | adantld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ( ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 )  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) | 
						
							| 69 | 68 | imp | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) )  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑚 )  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) | 
						
							| 70 | 47 69 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) )  →  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) | 
						
							| 71 | 40 70 | jca | ⊢ ( ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) )  →  ( 𝑚  ∈  𝐷  ∧  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) | 
						
							| 72 | 71 | ex | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ( ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 )  →  ( 𝑚  ∈  𝐷  ∧  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) | 
						
							| 73 | 72 | adantld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ( ( 𝑚  ∈  𝑉  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) )  →  ( 𝑚  ∈  𝐷  ∧  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) | 
						
							| 74 | 73 | eximdv | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ( ∃ 𝑚 ( 𝑚  ∈  𝑉  ∧  ( { 𝑛 ,  𝑚 }  ∈  𝐸  ∧  { 𝑚 ,  𝑋 }  ∈  𝐸 ) )  →  ∃ 𝑚 ( 𝑚  ∈  𝐷  ∧  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) ) | 
						
							| 75 | 32 74 | mpd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ∃ 𝑚 ( 𝑚  ∈  𝐷  ∧  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) | 
						
							| 76 |  | df-rex | ⊢ ( ∃ 𝑚  ∈  𝐷 𝑛  =  ( 𝐴 ‘ 𝑚 )  ↔  ∃ 𝑚 ( 𝑚  ∈  𝐷  ∧  𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) | 
						
							| 77 | 75 76 | sylibr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑁 )  →  ∃ 𝑚  ∈  𝐷 𝑛  =  ( 𝐴 ‘ 𝑚 ) ) | 
						
							| 78 | 77 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑁 ∃ 𝑚  ∈  𝐷 𝑛  =  ( 𝐴 ‘ 𝑚 ) ) | 
						
							| 79 |  | dffo3 | ⊢ ( 𝐴 : 𝐷 –onto→ 𝑁  ↔  ( 𝐴 : 𝐷 ⟶ 𝑁  ∧  ∀ 𝑛  ∈  𝑁 ∃ 𝑚  ∈  𝐷 𝑛  =  ( 𝐴 ‘ 𝑚 ) ) ) | 
						
							| 80 | 11 78 79 | sylanbrc | ⊢ ( 𝜑  →  𝐴 : 𝐷 –onto→ 𝑁 ) |