| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v1 |
|
| 2 |
|
frgrncvvdeq.e |
|
| 3 |
|
frgrncvvdeq.nx |
|
| 4 |
|
frgrncvvdeq.ny |
|
| 5 |
|
frgrncvvdeq.x |
|
| 6 |
|
frgrncvvdeq.y |
|
| 7 |
|
frgrncvvdeq.ne |
|
| 8 |
|
frgrncvvdeq.xy |
|
| 9 |
|
frgrncvvdeq.f |
|
| 10 |
|
frgrncvvdeq.a |
|
| 11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem4 |
|
| 12 |
9
|
adantr |
|
| 13 |
4
|
eleq2i |
|
| 14 |
1
|
nbgrisvtx |
|
| 15 |
14
|
a1i |
|
| 16 |
13 15
|
biimtrid |
|
| 17 |
16
|
imp |
|
| 18 |
5
|
adantr |
|
| 19 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem1 |
|
| 20 |
|
df-nel |
|
| 21 |
|
nelelne |
|
| 22 |
20 21
|
sylbi |
|
| 23 |
19 22
|
syl |
|
| 24 |
23
|
imp |
|
| 25 |
17 18 24
|
3jca |
|
| 26 |
12 25
|
jca |
|
| 27 |
1 2
|
frcond2 |
|
| 28 |
27
|
imp |
|
| 29 |
|
reurex |
|
| 30 |
|
df-rex |
|
| 31 |
29 30
|
sylib |
|
| 32 |
26 28 31
|
3syl |
|
| 33 |
|
frgrusgr |
|
| 34 |
2
|
nbusgreledg |
|
| 35 |
34
|
bicomd |
|
| 36 |
9 33 35
|
3syl |
|
| 37 |
36
|
biimpa |
|
| 38 |
3
|
eleq2i |
|
| 39 |
37 38
|
sylibr |
|
| 40 |
39
|
ad2ant2rl |
|
| 41 |
2
|
nbusgreledg |
|
| 42 |
41
|
biimpar |
|
| 43 |
42
|
a1d |
|
| 44 |
43
|
expimpd |
|
| 45 |
9 33 44
|
3syl |
|
| 46 |
45
|
adantr |
|
| 47 |
46
|
imp |
|
| 48 |
|
elin |
|
| 49 |
|
simpl |
|
| 50 |
49 39
|
jca |
|
| 51 |
|
preq1 |
|
| 52 |
51
|
eleq1d |
|
| 53 |
52
|
riotabidv |
|
| 54 |
53
|
cbvmptv |
|
| 55 |
10 54
|
eqtri |
|
| 56 |
1 2 3 4 5 6 7 8 9 55
|
frgrncvvdeqlem5 |
|
| 57 |
|
eleq2 |
|
| 58 |
57
|
eqcoms |
|
| 59 |
|
elsni |
|
| 60 |
58 59
|
biimtrdi |
|
| 61 |
50 56 60
|
3syl |
|
| 62 |
61
|
expcom |
|
| 63 |
62
|
com3r |
|
| 64 |
48 63
|
sylbir |
|
| 65 |
64
|
ex |
|
| 66 |
65
|
com14 |
|
| 67 |
66
|
imp |
|
| 68 |
67
|
adantld |
|
| 69 |
68
|
imp |
|
| 70 |
47 69
|
mpd |
|
| 71 |
40 70
|
jca |
|
| 72 |
71
|
ex |
|
| 73 |
72
|
adantld |
|
| 74 |
73
|
eximdv |
|
| 75 |
32 74
|
mpd |
|
| 76 |
|
df-rex |
|
| 77 |
75 76
|
sylibr |
|
| 78 |
77
|
ralrimiva |
|
| 79 |
|
dffo3 |
|
| 80 |
11 78 79
|
sylanbrc |
|