| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v |  | 
						
							| 2 |  | frgrncvvdeq.d |  | 
						
							| 3 |  | ovexd |  | 
						
							| 4 |  | eqid |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | simpl |  | 
						
							| 8 | 7 | ad2antlr |  | 
						
							| 9 |  | eldifi |  | 
						
							| 10 | 9 | adantl |  | 
						
							| 11 | 10 | ad2antlr |  | 
						
							| 12 |  | eldif |  | 
						
							| 13 |  | velsn |  | 
						
							| 14 | 13 | biimpri |  | 
						
							| 15 | 14 | equcoms |  | 
						
							| 16 | 15 | necon3bi |  | 
						
							| 17 | 12 16 | simplbiim |  | 
						
							| 18 | 17 | adantl |  | 
						
							| 19 | 18 | ad2antlr |  | 
						
							| 20 |  | simpr |  | 
						
							| 21 |  | simpl |  | 
						
							| 22 | 21 | adantr |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 1 4 5 6 8 11 19 20 22 23 | frgrncvvdeqlem10 |  | 
						
							| 25 | 3 24 | hasheqf1od |  | 
						
							| 26 |  | frgrusgr |  | 
						
							| 27 | 26 7 | anim12i |  | 
						
							| 28 | 27 | adantr |  | 
						
							| 29 | 1 | hashnbusgrvd |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 | 26 10 | anim12i |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 | 1 | hashnbusgrvd |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 | 25 30 34 | 3eqtr3d |  | 
						
							| 36 | 2 | fveq1i |  | 
						
							| 37 | 2 | fveq1i |  | 
						
							| 38 | 35 36 37 | 3eqtr4g |  | 
						
							| 39 | 38 | ex |  | 
						
							| 40 | 39 | ralrimivva |  |