Metamath Proof Explorer


Theorem frgrncvvdeqlem1

Description: Lemma 1 for frgrncvvdeq . (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 8-May-2021) (Proof shortened by AV, 12-Feb-2022)

Ref Expression
Hypotheses frgrncvvdeq.v1 𝑉 = ( Vtx ‘ 𝐺 )
frgrncvvdeq.e 𝐸 = ( Edg ‘ 𝐺 )
frgrncvvdeq.nx 𝐷 = ( 𝐺 NeighbVtx 𝑋 )
frgrncvvdeq.ny 𝑁 = ( 𝐺 NeighbVtx 𝑌 )
frgrncvvdeq.x ( 𝜑𝑋𝑉 )
frgrncvvdeq.y ( 𝜑𝑌𝑉 )
frgrncvvdeq.ne ( 𝜑𝑋𝑌 )
frgrncvvdeq.xy ( 𝜑𝑌𝐷 )
frgrncvvdeq.f ( 𝜑𝐺 ∈ FriendGraph )
frgrncvvdeq.a 𝐴 = ( 𝑥𝐷 ↦ ( 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
Assertion frgrncvvdeqlem1 ( 𝜑𝑋𝑁 )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 𝑉 = ( Vtx ‘ 𝐺 )
2 frgrncvvdeq.e 𝐸 = ( Edg ‘ 𝐺 )
3 frgrncvvdeq.nx 𝐷 = ( 𝐺 NeighbVtx 𝑋 )
4 frgrncvvdeq.ny 𝑁 = ( 𝐺 NeighbVtx 𝑌 )
5 frgrncvvdeq.x ( 𝜑𝑋𝑉 )
6 frgrncvvdeq.y ( 𝜑𝑌𝑉 )
7 frgrncvvdeq.ne ( 𝜑𝑋𝑌 )
8 frgrncvvdeq.xy ( 𝜑𝑌𝐷 )
9 frgrncvvdeq.f ( 𝜑𝐺 ∈ FriendGraph )
10 frgrncvvdeq.a 𝐴 = ( 𝑥𝐷 ↦ ( 𝑦𝑁 { 𝑥 , 𝑦 } ∈ 𝐸 ) )
11 df-nel ( 𝑌𝐷 ↔ ¬ 𝑌𝐷 )
12 3 eleq2i ( 𝑌𝐷𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) )
13 11 12 xchbinx ( 𝑌𝐷 ↔ ¬ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) )
14 8 13 sylib ( 𝜑 → ¬ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) )
15 nbgrsym ( 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) ↔ 𝑌 ∈ ( 𝐺 NeighbVtx 𝑋 ) )
16 14 15 sylnibr ( 𝜑 → ¬ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) )
17 neleq2 ( 𝑁 = ( 𝐺 NeighbVtx 𝑌 ) → ( 𝑋𝑁𝑋 ∉ ( 𝐺 NeighbVtx 𝑌 ) ) )
18 4 17 ax-mp ( 𝑋𝑁𝑋 ∉ ( 𝐺 NeighbVtx 𝑌 ) )
19 df-nel ( 𝑋 ∉ ( 𝐺 NeighbVtx 𝑌 ) ↔ ¬ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) )
20 18 19 bitri ( 𝑋𝑁 ↔ ¬ 𝑋 ∈ ( 𝐺 NeighbVtx 𝑌 ) )
21 16 20 sylibr ( 𝜑𝑋𝑁 )