| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v1 |
|- V = ( Vtx ` G ) |
| 2 |
|
frgrncvvdeq.e |
|- E = ( Edg ` G ) |
| 3 |
|
frgrncvvdeq.nx |
|- D = ( G NeighbVtx X ) |
| 4 |
|
frgrncvvdeq.ny |
|- N = ( G NeighbVtx Y ) |
| 5 |
|
frgrncvvdeq.x |
|- ( ph -> X e. V ) |
| 6 |
|
frgrncvvdeq.y |
|- ( ph -> Y e. V ) |
| 7 |
|
frgrncvvdeq.ne |
|- ( ph -> X =/= Y ) |
| 8 |
|
frgrncvvdeq.xy |
|- ( ph -> Y e/ D ) |
| 9 |
|
frgrncvvdeq.f |
|- ( ph -> G e. FriendGraph ) |
| 10 |
|
frgrncvvdeq.a |
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
| 11 |
|
df-nel |
|- ( Y e/ D <-> -. Y e. D ) |
| 12 |
3
|
eleq2i |
|- ( Y e. D <-> Y e. ( G NeighbVtx X ) ) |
| 13 |
11 12
|
xchbinx |
|- ( Y e/ D <-> -. Y e. ( G NeighbVtx X ) ) |
| 14 |
8 13
|
sylib |
|- ( ph -> -. Y e. ( G NeighbVtx X ) ) |
| 15 |
|
nbgrsym |
|- ( X e. ( G NeighbVtx Y ) <-> Y e. ( G NeighbVtx X ) ) |
| 16 |
14 15
|
sylnibr |
|- ( ph -> -. X e. ( G NeighbVtx Y ) ) |
| 17 |
|
neleq2 |
|- ( N = ( G NeighbVtx Y ) -> ( X e/ N <-> X e/ ( G NeighbVtx Y ) ) ) |
| 18 |
4 17
|
ax-mp |
|- ( X e/ N <-> X e/ ( G NeighbVtx Y ) ) |
| 19 |
|
df-nel |
|- ( X e/ ( G NeighbVtx Y ) <-> -. X e. ( G NeighbVtx Y ) ) |
| 20 |
18 19
|
bitri |
|- ( X e/ N <-> -. X e. ( G NeighbVtx Y ) ) |
| 21 |
16 20
|
sylibr |
|- ( ph -> X e/ N ) |