| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrncvvdeq.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | frgrncvvdeq.nx |  |-  D = ( G NeighbVtx X ) | 
						
							| 4 |  | frgrncvvdeq.ny |  |-  N = ( G NeighbVtx Y ) | 
						
							| 5 |  | frgrncvvdeq.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | frgrncvvdeq.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | frgrncvvdeq.ne |  |-  ( ph -> X =/= Y ) | 
						
							| 8 |  | frgrncvvdeq.xy |  |-  ( ph -> Y e/ D ) | 
						
							| 9 |  | frgrncvvdeq.f |  |-  ( ph -> G e. FriendGraph ) | 
						
							| 10 |  | frgrncvvdeq.a |  |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) | 
						
							| 11 |  | df-nel |  |-  ( Y e/ D <-> -. Y e. D ) | 
						
							| 12 | 3 | eleq2i |  |-  ( Y e. D <-> Y e. ( G NeighbVtx X ) ) | 
						
							| 13 | 11 12 | xchbinx |  |-  ( Y e/ D <-> -. Y e. ( G NeighbVtx X ) ) | 
						
							| 14 | 8 13 | sylib |  |-  ( ph -> -. Y e. ( G NeighbVtx X ) ) | 
						
							| 15 |  | nbgrsym |  |-  ( X e. ( G NeighbVtx Y ) <-> Y e. ( G NeighbVtx X ) ) | 
						
							| 16 | 14 15 | sylnibr |  |-  ( ph -> -. X e. ( G NeighbVtx Y ) ) | 
						
							| 17 |  | neleq2 |  |-  ( N = ( G NeighbVtx Y ) -> ( X e/ N <-> X e/ ( G NeighbVtx Y ) ) ) | 
						
							| 18 | 4 17 | ax-mp |  |-  ( X e/ N <-> X e/ ( G NeighbVtx Y ) ) | 
						
							| 19 |  | df-nel |  |-  ( X e/ ( G NeighbVtx Y ) <-> -. X e. ( G NeighbVtx Y ) ) | 
						
							| 20 | 18 19 | bitri |  |-  ( X e/ N <-> -. X e. ( G NeighbVtx Y ) ) | 
						
							| 21 | 16 20 | sylibr |  |-  ( ph -> X e/ N ) |