| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrncvvdeq.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | frgrncvvdeq.nx | ⊢ 𝐷  =  ( 𝐺  NeighbVtx  𝑋 ) | 
						
							| 4 |  | frgrncvvdeq.ny | ⊢ 𝑁  =  ( 𝐺  NeighbVtx  𝑌 ) | 
						
							| 5 |  | frgrncvvdeq.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | frgrncvvdeq.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 |  | frgrncvvdeq.ne | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
						
							| 8 |  | frgrncvvdeq.xy | ⊢ ( 𝜑  →  𝑌  ∉  𝐷 ) | 
						
							| 9 |  | frgrncvvdeq.f | ⊢ ( 𝜑  →  𝐺  ∈   FriendGraph  ) | 
						
							| 10 |  | frgrncvvdeq.a | ⊢ 𝐴  =  ( 𝑥  ∈  𝐷  ↦  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 11 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 12 | 3 | eleq2i | ⊢ ( 𝑥  ∈  𝐷  ↔  𝑥  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 13 | 1 | nbgrisvtx | ⊢ ( 𝑥  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  𝑥  ∈  𝑉 ) | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  𝑥  ∈  𝑉 ) ) | 
						
							| 15 | 12 14 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  →  𝑥  ∈  𝑉 ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝑉 ) | 
						
							| 17 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑌  ∈  𝑉 ) | 
						
							| 18 |  | elnelne2 | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑌  ∉  𝐷 )  →  𝑥  ≠  𝑌 ) | 
						
							| 19 | 18 | expcom | ⊢ ( 𝑌  ∉  𝐷  →  ( 𝑥  ∈  𝐷  →  𝑥  ≠  𝑌 ) ) | 
						
							| 20 | 8 19 | syl | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  →  𝑥  ≠  𝑌 ) ) | 
						
							| 21 | 20 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ≠  𝑌 ) | 
						
							| 22 | 16 17 21 | 3jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑥  ∈  𝑉  ∧  𝑌  ∈  𝑉  ∧  𝑥  ≠  𝑌 ) ) | 
						
							| 23 | 1 2 | frcond1 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑥  ∈  𝑉  ∧  𝑌  ∈  𝑉  ∧  𝑥  ≠  𝑌 )  →  ∃! 𝑦  ∈  𝑉 { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 ) ) | 
						
							| 24 | 11 22 23 | sylc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃! 𝑦  ∈  𝑉 { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 ) | 
						
							| 25 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 26 |  | prex | ⊢ { 𝑥 ,  𝑦 }  ∈  V | 
						
							| 27 |  | prex | ⊢ { 𝑦 ,  𝑌 }  ∈  V | 
						
							| 28 | 26 27 | prss | ⊢ ( ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑌 }  ∈  𝐸 )  ↔  { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 ) | 
						
							| 29 |  | ancom | ⊢ ( ( { 𝑥 ,  𝑦 }  ∈  𝐸  ∧  { 𝑦 ,  𝑌 }  ∈  𝐸 )  ↔  ( { 𝑦 ,  𝑌 }  ∈  𝐸  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 30 | 28 29 | bitr3i | ⊢ ( { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸  ↔  ( { 𝑦 ,  𝑌 }  ∈  𝐸  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 31 | 30 | anbi2i | ⊢ ( ( 𝑦  ∈  𝑉  ∧  { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 )  ↔  ( 𝑦  ∈  𝑉  ∧  ( { 𝑦 ,  𝑌 }  ∈  𝐸  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) ) | 
						
							| 32 |  | usgrumgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  UMGraph ) | 
						
							| 33 | 1 2 | umgrpredgv | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 )  →  ( 𝑥  ∈  𝑉  ∧  𝑦  ∈  𝑉 ) ) | 
						
							| 34 | 33 | simprd | ⊢ ( ( 𝐺  ∈  UMGraph  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 )  →  𝑦  ∈  𝑉 ) | 
						
							| 35 | 34 | ex | ⊢ ( 𝐺  ∈  UMGraph  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  →  𝑦  ∈  𝑉 ) ) | 
						
							| 36 | 32 35 | syl | ⊢ ( 𝐺  ∈  USGraph  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  →  𝑦  ∈  𝑉 ) ) | 
						
							| 37 | 36 | adantld | ⊢ ( 𝐺  ∈  USGraph  →  ( ( { 𝑦 ,  𝑌 }  ∈  𝐸  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 )  →  𝑦  ∈  𝑉 ) ) | 
						
							| 38 | 37 | pm4.71rd | ⊢ ( 𝐺  ∈  USGraph  →  ( ( { 𝑦 ,  𝑌 }  ∈  𝐸  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 )  ↔  ( 𝑦  ∈  𝑉  ∧  ( { 𝑦 ,  𝑌 }  ∈  𝐸  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) ) ) | 
						
							| 39 | 31 38 | bitr4id | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝑦  ∈  𝑉  ∧  { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 )  ↔  ( { 𝑦 ,  𝑌 }  ∈  𝐸  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) ) | 
						
							| 40 | 4 | eleq2i | ⊢ ( 𝑦  ∈  𝑁  ↔  𝑦  ∈  ( 𝐺  NeighbVtx  𝑌 ) ) | 
						
							| 41 | 2 | nbusgreledg | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑦  ∈  ( 𝐺  NeighbVtx  𝑌 )  ↔  { 𝑦 ,  𝑌 }  ∈  𝐸 ) ) | 
						
							| 42 | 40 41 | bitr2id | ⊢ ( 𝐺  ∈  USGraph  →  ( { 𝑦 ,  𝑌 }  ∈  𝐸  ↔  𝑦  ∈  𝑁 ) ) | 
						
							| 43 | 42 | anbi1d | ⊢ ( 𝐺  ∈  USGraph  →  ( ( { 𝑦 ,  𝑌 }  ∈  𝐸  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 )  ↔  ( 𝑦  ∈  𝑁  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) ) | 
						
							| 44 | 39 43 | bitrd | ⊢ ( 𝐺  ∈  USGraph  →  ( ( 𝑦  ∈  𝑉  ∧  { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 )  ↔  ( 𝑦  ∈  𝑁  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) ) | 
						
							| 45 | 44 | eubidv | ⊢ ( 𝐺  ∈  USGraph  →  ( ∃! 𝑦 ( 𝑦  ∈  𝑉  ∧  { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 )  ↔  ∃! 𝑦 ( 𝑦  ∈  𝑁  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) ) | 
						
							| 46 | 45 | biimpd | ⊢ ( 𝐺  ∈  USGraph  →  ( ∃! 𝑦 ( 𝑦  ∈  𝑉  ∧  { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 )  →  ∃! 𝑦 ( 𝑦  ∈  𝑁  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) ) | 
						
							| 47 |  | df-reu | ⊢ ( ∃! 𝑦  ∈  𝑉 { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸  ↔  ∃! 𝑦 ( 𝑦  ∈  𝑉  ∧  { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸 ) ) | 
						
							| 48 |  | df-reu | ⊢ ( ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸  ↔  ∃! 𝑦 ( 𝑦  ∈  𝑁  ∧  { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 49 | 46 47 48 | 3imtr4g | ⊢ ( 𝐺  ∈  USGraph  →  ( ∃! 𝑦  ∈  𝑉 { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸  →  ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 50 | 9 25 49 | 3syl | ⊢ ( 𝜑  →  ( ∃! 𝑦  ∈  𝑉 { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸  →  ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ∃! 𝑦  ∈  𝑉 { { 𝑥 ,  𝑦 } ,  { 𝑦 ,  𝑌 } }  ⊆  𝐸  →  ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 52 | 24 51 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) |