| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | frgrncvvdeq.e | ⊢ 𝐸  =  ( Edg ‘ 𝐺 ) | 
						
							| 3 |  | frgrncvvdeq.nx | ⊢ 𝐷  =  ( 𝐺  NeighbVtx  𝑋 ) | 
						
							| 4 |  | frgrncvvdeq.ny | ⊢ 𝑁  =  ( 𝐺  NeighbVtx  𝑌 ) | 
						
							| 5 |  | frgrncvvdeq.x | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 6 |  | frgrncvvdeq.y | ⊢ ( 𝜑  →  𝑌  ∈  𝑉 ) | 
						
							| 7 |  | frgrncvvdeq.ne | ⊢ ( 𝜑  →  𝑋  ≠  𝑌 ) | 
						
							| 8 |  | frgrncvvdeq.xy | ⊢ ( 𝜑  →  𝑌  ∉  𝐷 ) | 
						
							| 9 |  | frgrncvvdeq.f | ⊢ ( 𝜑  →  𝐺  ∈   FriendGraph  ) | 
						
							| 10 |  | frgrncvvdeq.a | ⊢ 𝐴  =  ( 𝑥  ∈  𝐷  ↦  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 11 | 4 | ineq2i | ⊢ ( ( 𝐺  NeighbVtx  𝑥 )  ∩  𝑁 )  =  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) ) | 
						
							| 12 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝐺  ∈   FriendGraph  ) | 
						
							| 13 | 3 | eleq2i | ⊢ ( 𝑥  ∈  𝐷  ↔  𝑥  ∈  ( 𝐺  NeighbVtx  𝑋 ) ) | 
						
							| 14 | 1 | nbgrisvtx | ⊢ ( 𝑥  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  𝑥  ∈  𝑉 ) | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐺  NeighbVtx  𝑋 )  →  𝑥  ∈  𝑉 ) ) | 
						
							| 16 | 13 15 | biimtrid | ⊢ ( 𝜑  →  ( 𝑥  ∈  𝐷  →  𝑥  ∈  𝑉 ) ) | 
						
							| 17 | 16 | imp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ∈  𝑉 ) | 
						
							| 18 | 6 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑌  ∈  𝑉 ) | 
						
							| 19 |  | elnelne2 | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝑌  ∉  𝐷 )  →  𝑥  ≠  𝑌 ) | 
						
							| 20 | 8 19 | sylan2 | ⊢ ( ( 𝑥  ∈  𝐷  ∧  𝜑 )  →  𝑥  ≠  𝑌 ) | 
						
							| 21 | 20 | ancoms | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  𝑥  ≠  𝑌 ) | 
						
							| 22 | 17 18 21 | 3jca | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑥  ∈  𝑉  ∧  𝑌  ∈  𝑉  ∧  𝑥  ≠  𝑌 ) ) | 
						
							| 23 | 1 2 | frcond3 | ⊢ ( 𝐺  ∈   FriendGraph   →  ( ( 𝑥  ∈  𝑉  ∧  𝑌  ∈  𝑉  ∧  𝑥  ≠  𝑌 )  →  ∃ 𝑛  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 } ) ) | 
						
							| 24 | 12 22 23 | sylc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃ 𝑛  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 } ) | 
						
							| 25 |  | vex | ⊢ 𝑛  ∈  V | 
						
							| 26 |  | elinsn | ⊢ ( ( 𝑛  ∈  V  ∧  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 } )  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 ) ) ) | 
						
							| 27 | 25 26 | mpan | ⊢ ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 ) ) ) | 
						
							| 28 |  | frgrusgr | ⊢ ( 𝐺  ∈   FriendGraph   →  𝐺  ∈  USGraph ) | 
						
							| 29 | 2 | nbusgreledg | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ↔  { 𝑛 ,  𝑥 }  ∈  𝐸 ) ) | 
						
							| 30 |  | prcom | ⊢ { 𝑛 ,  𝑥 }  =  { 𝑥 ,  𝑛 } | 
						
							| 31 | 30 | eleq1i | ⊢ ( { 𝑛 ,  𝑥 }  ∈  𝐸  ↔  { 𝑥 ,  𝑛 }  ∈  𝐸 ) | 
						
							| 32 | 29 31 | bitrdi | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ↔  { 𝑥 ,  𝑛 }  ∈  𝐸 ) ) | 
						
							| 33 | 32 | biimpd | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  →  { 𝑥 ,  𝑛 }  ∈  𝐸 ) ) | 
						
							| 34 | 9 28 33 | 3syl | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  →  { 𝑥 ,  𝑛 }  ∈  𝐸 ) ) | 
						
							| 35 | 34 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  →  { 𝑥 ,  𝑛 }  ∈  𝐸 ) ) | 
						
							| 36 | 35 | com12 | ⊢ ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑥 ,  𝑛 }  ∈  𝐸 ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 ) )  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { 𝑥 ,  𝑛 }  ∈  𝐸 ) ) | 
						
							| 38 | 37 | imp | ⊢ ( ( ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 ) )  ∧  ( 𝜑  ∧  𝑥  ∈  𝐷 ) )  →  { 𝑥 ,  𝑛 }  ∈  𝐸 ) | 
						
							| 39 | 4 | eqcomi | ⊢ ( 𝐺  NeighbVtx  𝑌 )  =  𝑁 | 
						
							| 40 | 39 | eleq2i | ⊢ ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 )  ↔  𝑛  ∈  𝑁 ) | 
						
							| 41 | 40 | biimpi | ⊢ ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 )  →  𝑛  ∈  𝑁 ) | 
						
							| 42 | 41 | adantl | ⊢ ( ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 ) )  →  𝑛  ∈  𝑁 ) | 
						
							| 43 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) | 
						
							| 44 |  | preq2 | ⊢ ( 𝑦  =  𝑛  →  { 𝑥 ,  𝑦 }  =  { 𝑥 ,  𝑛 } ) | 
						
							| 45 | 44 | eleq1d | ⊢ ( 𝑦  =  𝑛  →  ( { 𝑥 ,  𝑦 }  ∈  𝐸  ↔  { 𝑥 ,  𝑛 }  ∈  𝐸 ) ) | 
						
							| 46 | 45 | riota2 | ⊢ ( ( 𝑛  ∈  𝑁  ∧  ∃! 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 )  →  ( { 𝑥 ,  𝑛 }  ∈  𝐸  ↔  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 )  =  𝑛 ) ) | 
						
							| 47 | 42 43 46 | syl2an | ⊢ ( ( ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 ) )  ∧  ( 𝜑  ∧  𝑥  ∈  𝐷 ) )  →  ( { 𝑥 ,  𝑛 }  ∈  𝐸  ↔  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 )  =  𝑛 ) ) | 
						
							| 48 | 38 47 | mpbid | ⊢ ( ( ( 𝑛  ∈  ( 𝐺  NeighbVtx  𝑥 )  ∧  𝑛  ∈  ( 𝐺  NeighbVtx  𝑌 ) )  ∧  ( 𝜑  ∧  𝑥  ∈  𝐷 ) )  →  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 )  =  𝑛 ) | 
						
							| 49 | 27 48 | sylan | ⊢ ( ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  ∧  ( 𝜑  ∧  𝑥  ∈  𝐷 ) )  →  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 )  =  𝑛 ) | 
						
							| 50 | 49 | eqcomd | ⊢ ( ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  ∧  ( 𝜑  ∧  𝑥  ∈  𝐷 ) )  →  𝑛  =  ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) ) | 
						
							| 51 | 50 | sneqd | ⊢ ( ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  ∧  ( 𝜑  ∧  𝑥  ∈  𝐷 ) )  →  { 𝑛 }  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) } ) | 
						
							| 52 |  | eqeq1 | ⊢ ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  →  ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) }  ↔  { 𝑛 }  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) } ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  ∧  ( 𝜑  ∧  𝑥  ∈  𝐷 ) )  →  ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) }  ↔  { 𝑛 }  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) } ) ) | 
						
							| 54 | 51 53 | mpbird | ⊢ ( ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  ∧  ( 𝜑  ∧  𝑥  ∈  𝐷 ) )  →  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) } ) | 
						
							| 55 | 54 | ex | ⊢ ( ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) } ) ) | 
						
							| 56 | 55 | rexlimivw | ⊢ ( ∃ 𝑛  ∈  𝑉 ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { 𝑛 }  →  ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) } ) ) | 
						
							| 57 | 24 56 | mpcom | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  ( 𝐺  NeighbVtx  𝑌 ) )  =  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) } ) | 
						
							| 58 | 11 57 | eqtr2id | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐷 )  →  { ( ℩ 𝑦  ∈  𝑁 { 𝑥 ,  𝑦 }  ∈  𝐸 ) }  =  ( ( 𝐺  NeighbVtx  𝑥 )  ∩  𝑁 ) ) |