Metamath Proof Explorer


Theorem frgrncvvdeqlem3

Description: Lemma 3 for frgrncvvdeq . The unique neighbor of a vertex (expressed by a restricted iota) is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 12-Feb-2022)

Ref Expression
Hypotheses frgrncvvdeq.v1 V = Vtx G
frgrncvvdeq.e E = Edg G
frgrncvvdeq.nx D = G NeighbVtx X
frgrncvvdeq.ny N = G NeighbVtx Y
frgrncvvdeq.x φ X V
frgrncvvdeq.y φ Y V
frgrncvvdeq.ne φ X Y
frgrncvvdeq.xy φ Y D
frgrncvvdeq.f φ G FriendGraph
frgrncvvdeq.a A = x D ι y N | x y E
Assertion frgrncvvdeqlem3 φ x D ι y N | x y E = G NeighbVtx x N

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1 V = Vtx G
2 frgrncvvdeq.e E = Edg G
3 frgrncvvdeq.nx D = G NeighbVtx X
4 frgrncvvdeq.ny N = G NeighbVtx Y
5 frgrncvvdeq.x φ X V
6 frgrncvvdeq.y φ Y V
7 frgrncvvdeq.ne φ X Y
8 frgrncvvdeq.xy φ Y D
9 frgrncvvdeq.f φ G FriendGraph
10 frgrncvvdeq.a A = x D ι y N | x y E
11 4 ineq2i G NeighbVtx x N = G NeighbVtx x G NeighbVtx Y
12 9 adantr φ x D G FriendGraph
13 3 eleq2i x D x G NeighbVtx X
14 1 nbgrisvtx x G NeighbVtx X x V
15 14 a1i φ x G NeighbVtx X x V
16 13 15 syl5bi φ x D x V
17 16 imp φ x D x V
18 6 adantr φ x D Y V
19 elnelne2 x D Y D x Y
20 8 19 sylan2 x D φ x Y
21 20 ancoms φ x D x Y
22 17 18 21 3jca φ x D x V Y V x Y
23 1 2 frcond3 G FriendGraph x V Y V x Y n V G NeighbVtx x G NeighbVtx Y = n
24 12 22 23 sylc φ x D n V G NeighbVtx x G NeighbVtx Y = n
25 vex n V
26 elinsn n V G NeighbVtx x G NeighbVtx Y = n n G NeighbVtx x n G NeighbVtx Y
27 25 26 mpan G NeighbVtx x G NeighbVtx Y = n n G NeighbVtx x n G NeighbVtx Y
28 frgrusgr G FriendGraph G USGraph
29 2 nbusgreledg G USGraph n G NeighbVtx x n x E
30 prcom n x = x n
31 30 eleq1i n x E x n E
32 29 31 syl6bb G USGraph n G NeighbVtx x x n E
33 32 biimpd G USGraph n G NeighbVtx x x n E
34 9 28 33 3syl φ n G NeighbVtx x x n E
35 34 adantr φ x D n G NeighbVtx x x n E
36 35 com12 n G NeighbVtx x φ x D x n E
37 36 adantr n G NeighbVtx x n G NeighbVtx Y φ x D x n E
38 37 imp n G NeighbVtx x n G NeighbVtx Y φ x D x n E
39 4 eqcomi G NeighbVtx Y = N
40 39 eleq2i n G NeighbVtx Y n N
41 40 biimpi n G NeighbVtx Y n N
42 41 adantl n G NeighbVtx x n G NeighbVtx Y n N
43 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem2 φ x D ∃! y N x y E
44 preq2 y = n x y = x n
45 44 eleq1d y = n x y E x n E
46 45 riota2 n N ∃! y N x y E x n E ι y N | x y E = n
47 42 43 46 syl2an n G NeighbVtx x n G NeighbVtx Y φ x D x n E ι y N | x y E = n
48 38 47 mpbid n G NeighbVtx x n G NeighbVtx Y φ x D ι y N | x y E = n
49 27 48 sylan G NeighbVtx x G NeighbVtx Y = n φ x D ι y N | x y E = n
50 49 eqcomd G NeighbVtx x G NeighbVtx Y = n φ x D n = ι y N | x y E
51 50 sneqd G NeighbVtx x G NeighbVtx Y = n φ x D n = ι y N | x y E
52 eqeq1 G NeighbVtx x G NeighbVtx Y = n G NeighbVtx x G NeighbVtx Y = ι y N | x y E n = ι y N | x y E
53 52 adantr G NeighbVtx x G NeighbVtx Y = n φ x D G NeighbVtx x G NeighbVtx Y = ι y N | x y E n = ι y N | x y E
54 51 53 mpbird G NeighbVtx x G NeighbVtx Y = n φ x D G NeighbVtx x G NeighbVtx Y = ι y N | x y E
55 54 ex G NeighbVtx x G NeighbVtx Y = n φ x D G NeighbVtx x G NeighbVtx Y = ι y N | x y E
56 55 rexlimivw n V G NeighbVtx x G NeighbVtx Y = n φ x D G NeighbVtx x G NeighbVtx Y = ι y N | x y E
57 24 56 mpcom φ x D G NeighbVtx x G NeighbVtx Y = ι y N | x y E
58 11 57 syl5req φ x D ι y N | x y E = G NeighbVtx x N