Description: The friendship condition, expressed by neighborhoods: in a friendship graph, the neighborhood of a vertex and the neighborhood of a second, different vertex have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 30-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frcond1.v | |
|
frcond1.e | |
||
Assertion | frcond3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frcond1.v | |
|
2 | frcond1.e | |
|
3 | 1 2 | frcond1 | |
4 | 3 | imp | |
5 | ssrab2 | |
|
6 | sseq1 | |
|
7 | 5 6 | mpbii | |
8 | vex | |
|
9 | 8 | snss | |
10 | 7 9 | sylibr | |
11 | 10 | adantl | |
12 | frgrusgr | |
|
13 | 1 2 | nbusgr | |
14 | 1 2 | nbusgr | |
15 | 13 14 | ineq12d | |
16 | 12 15 | syl | |
17 | 16 | adantr | |
18 | 17 | adantr | |
19 | inrab | |
|
20 | 18 19 | eqtrdi | |
21 | prcom | |
|
22 | 21 | eleq1i | |
23 | 22 | anbi2i | |
24 | prex | |
|
25 | prex | |
|
26 | 24 25 | prss | |
27 | 23 26 | bitri | |
28 | 27 | a1i | |
29 | 28 | rabbidva | |
30 | 29 | adantr | |
31 | simpr | |
|
32 | 20 30 31 | 3eqtrd | |
33 | 11 32 | jca | |
34 | 33 | ex | |
35 | 34 | eximdv | |
36 | reusn | |
|
37 | df-rex | |
|
38 | 35 36 37 | 3imtr4g | |
39 | 4 38 | mpd | |
40 | 39 | ex | |