Metamath Proof Explorer


Theorem frcond3

Description: The friendship condition, expressed by neighborhoods: in a friendship graph, the neighborhood of a vertex and the neighborhood of a second, different vertex have exactly one vertex in common. (Contributed by Alexander van der Vekens, 19-Dec-2017) (Revised by AV, 30-Dec-2021)

Ref Expression
Hypotheses frcond1.v V=VtxG
frcond1.e E=EdgG
Assertion frcond3 GFriendGraphAVCVACxVGNeighbVtxAGNeighbVtxC=x

Proof

Step Hyp Ref Expression
1 frcond1.v V=VtxG
2 frcond1.e E=EdgG
3 1 2 frcond1 GFriendGraphAVCVAC∃!bVAbbCE
4 3 imp GFriendGraphAVCVAC∃!bVAbbCE
5 ssrab2 bV|AbbCEV
6 sseq1 bV|AbbCE=xbV|AbbCEVxV
7 5 6 mpbii bV|AbbCE=xxV
8 vex xV
9 8 snss xVxV
10 7 9 sylibr bV|AbbCE=xxV
11 10 adantl GFriendGraphAVCVACbV|AbbCE=xxV
12 frgrusgr GFriendGraphGUSGraph
13 1 2 nbusgr GUSGraphGNeighbVtxA=bV|AbE
14 1 2 nbusgr GUSGraphGNeighbVtxC=bV|CbE
15 13 14 ineq12d GUSGraphGNeighbVtxAGNeighbVtxC=bV|AbEbV|CbE
16 12 15 syl GFriendGraphGNeighbVtxAGNeighbVtxC=bV|AbEbV|CbE
17 16 adantr GFriendGraphAVCVACGNeighbVtxAGNeighbVtxC=bV|AbEbV|CbE
18 17 adantr GFriendGraphAVCVACbV|AbbCE=xGNeighbVtxAGNeighbVtxC=bV|AbEbV|CbE
19 inrab bV|AbEbV|CbE=bV|AbECbE
20 18 19 eqtrdi GFriendGraphAVCVACbV|AbbCE=xGNeighbVtxAGNeighbVtxC=bV|AbECbE
21 prcom Cb=bC
22 21 eleq1i CbEbCE
23 22 anbi2i AbECbEAbEbCE
24 prex AbV
25 prex bCV
26 24 25 prss AbEbCEAbbCE
27 23 26 bitri AbECbEAbbCE
28 27 a1i GFriendGraphAVCVACbVAbECbEAbbCE
29 28 rabbidva GFriendGraphAVCVACbV|AbECbE=bV|AbbCE
30 29 adantr GFriendGraphAVCVACbV|AbbCE=xbV|AbECbE=bV|AbbCE
31 simpr GFriendGraphAVCVACbV|AbbCE=xbV|AbbCE=x
32 20 30 31 3eqtrd GFriendGraphAVCVACbV|AbbCE=xGNeighbVtxAGNeighbVtxC=x
33 11 32 jca GFriendGraphAVCVACbV|AbbCE=xxVGNeighbVtxAGNeighbVtxC=x
34 33 ex GFriendGraphAVCVACbV|AbbCE=xxVGNeighbVtxAGNeighbVtxC=x
35 34 eximdv GFriendGraphAVCVACxbV|AbbCE=xxxVGNeighbVtxAGNeighbVtxC=x
36 reusn ∃!bVAbbCExbV|AbbCE=x
37 df-rex xVGNeighbVtxAGNeighbVtxC=xxxVGNeighbVtxAGNeighbVtxC=x
38 35 36 37 3imtr4g GFriendGraphAVCVAC∃!bVAbbCExVGNeighbVtxAGNeighbVtxC=x
39 4 38 mpd GFriendGraphAVCVACxVGNeighbVtxAGNeighbVtxC=x
40 39 ex GFriendGraphAVCVACxVGNeighbVtxAGNeighbVtxC=x