| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrncvvdeq.v1 |
|- V = ( Vtx ` G ) |
| 2 |
|
frgrncvvdeq.e |
|- E = ( Edg ` G ) |
| 3 |
|
frgrncvvdeq.nx |
|- D = ( G NeighbVtx X ) |
| 4 |
|
frgrncvvdeq.ny |
|- N = ( G NeighbVtx Y ) |
| 5 |
|
frgrncvvdeq.x |
|- ( ph -> X e. V ) |
| 6 |
|
frgrncvvdeq.y |
|- ( ph -> Y e. V ) |
| 7 |
|
frgrncvvdeq.ne |
|- ( ph -> X =/= Y ) |
| 8 |
|
frgrncvvdeq.xy |
|- ( ph -> Y e/ D ) |
| 9 |
|
frgrncvvdeq.f |
|- ( ph -> G e. FriendGraph ) |
| 10 |
|
frgrncvvdeq.a |
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
| 11 |
4
|
ineq2i |
|- ( ( G NeighbVtx x ) i^i N ) = ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) |
| 12 |
9
|
adantr |
|- ( ( ph /\ x e. D ) -> G e. FriendGraph ) |
| 13 |
3
|
eleq2i |
|- ( x e. D <-> x e. ( G NeighbVtx X ) ) |
| 14 |
1
|
nbgrisvtx |
|- ( x e. ( G NeighbVtx X ) -> x e. V ) |
| 15 |
14
|
a1i |
|- ( ph -> ( x e. ( G NeighbVtx X ) -> x e. V ) ) |
| 16 |
13 15
|
biimtrid |
|- ( ph -> ( x e. D -> x e. V ) ) |
| 17 |
16
|
imp |
|- ( ( ph /\ x e. D ) -> x e. V ) |
| 18 |
6
|
adantr |
|- ( ( ph /\ x e. D ) -> Y e. V ) |
| 19 |
|
elnelne2 |
|- ( ( x e. D /\ Y e/ D ) -> x =/= Y ) |
| 20 |
8 19
|
sylan2 |
|- ( ( x e. D /\ ph ) -> x =/= Y ) |
| 21 |
20
|
ancoms |
|- ( ( ph /\ x e. D ) -> x =/= Y ) |
| 22 |
17 18 21
|
3jca |
|- ( ( ph /\ x e. D ) -> ( x e. V /\ Y e. V /\ x =/= Y ) ) |
| 23 |
1 2
|
frcond3 |
|- ( G e. FriendGraph -> ( ( x e. V /\ Y e. V /\ x =/= Y ) -> E. n e. V ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } ) ) |
| 24 |
12 22 23
|
sylc |
|- ( ( ph /\ x e. D ) -> E. n e. V ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } ) |
| 25 |
|
vex |
|- n e. _V |
| 26 |
|
elinsn |
|- ( ( n e. _V /\ ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } ) -> ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) ) |
| 27 |
25 26
|
mpan |
|- ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } -> ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) ) |
| 28 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
| 29 |
2
|
nbusgreledg |
|- ( G e. USGraph -> ( n e. ( G NeighbVtx x ) <-> { n , x } e. E ) ) |
| 30 |
|
prcom |
|- { n , x } = { x , n } |
| 31 |
30
|
eleq1i |
|- ( { n , x } e. E <-> { x , n } e. E ) |
| 32 |
29 31
|
bitrdi |
|- ( G e. USGraph -> ( n e. ( G NeighbVtx x ) <-> { x , n } e. E ) ) |
| 33 |
32
|
biimpd |
|- ( G e. USGraph -> ( n e. ( G NeighbVtx x ) -> { x , n } e. E ) ) |
| 34 |
9 28 33
|
3syl |
|- ( ph -> ( n e. ( G NeighbVtx x ) -> { x , n } e. E ) ) |
| 35 |
34
|
adantr |
|- ( ( ph /\ x e. D ) -> ( n e. ( G NeighbVtx x ) -> { x , n } e. E ) ) |
| 36 |
35
|
com12 |
|- ( n e. ( G NeighbVtx x ) -> ( ( ph /\ x e. D ) -> { x , n } e. E ) ) |
| 37 |
36
|
adantr |
|- ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) -> ( ( ph /\ x e. D ) -> { x , n } e. E ) ) |
| 38 |
37
|
imp |
|- ( ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) /\ ( ph /\ x e. D ) ) -> { x , n } e. E ) |
| 39 |
4
|
eqcomi |
|- ( G NeighbVtx Y ) = N |
| 40 |
39
|
eleq2i |
|- ( n e. ( G NeighbVtx Y ) <-> n e. N ) |
| 41 |
40
|
biimpi |
|- ( n e. ( G NeighbVtx Y ) -> n e. N ) |
| 42 |
41
|
adantl |
|- ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) -> n e. N ) |
| 43 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem2 |
|- ( ( ph /\ x e. D ) -> E! y e. N { x , y } e. E ) |
| 44 |
|
preq2 |
|- ( y = n -> { x , y } = { x , n } ) |
| 45 |
44
|
eleq1d |
|- ( y = n -> ( { x , y } e. E <-> { x , n } e. E ) ) |
| 46 |
45
|
riota2 |
|- ( ( n e. N /\ E! y e. N { x , y } e. E ) -> ( { x , n } e. E <-> ( iota_ y e. N { x , y } e. E ) = n ) ) |
| 47 |
42 43 46
|
syl2an |
|- ( ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) /\ ( ph /\ x e. D ) ) -> ( { x , n } e. E <-> ( iota_ y e. N { x , y } e. E ) = n ) ) |
| 48 |
38 47
|
mpbid |
|- ( ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) /\ ( ph /\ x e. D ) ) -> ( iota_ y e. N { x , y } e. E ) = n ) |
| 49 |
27 48
|
sylan |
|- ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> ( iota_ y e. N { x , y } e. E ) = n ) |
| 50 |
49
|
eqcomd |
|- ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> n = ( iota_ y e. N { x , y } e. E ) ) |
| 51 |
50
|
sneqd |
|- ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> { n } = { ( iota_ y e. N { x , y } e. E ) } ) |
| 52 |
|
eqeq1 |
|- ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } -> ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } <-> { n } = { ( iota_ y e. N { x , y } e. E ) } ) ) |
| 53 |
52
|
adantr |
|- ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } <-> { n } = { ( iota_ y e. N { x , y } e. E ) } ) ) |
| 54 |
51 53
|
mpbird |
|- ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } ) |
| 55 |
54
|
ex |
|- ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } -> ( ( ph /\ x e. D ) -> ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } ) ) |
| 56 |
55
|
rexlimivw |
|- ( E. n e. V ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } -> ( ( ph /\ x e. D ) -> ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } ) ) |
| 57 |
24 56
|
mpcom |
|- ( ( ph /\ x e. D ) -> ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } ) |
| 58 |
11 57
|
eqtr2id |
|- ( ( ph /\ x e. D ) -> { ( iota_ y e. N { x , y } e. E ) } = ( ( G NeighbVtx x ) i^i N ) ) |