| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgrncvvdeq.v1 |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | frgrncvvdeq.e |  |-  E = ( Edg ` G ) | 
						
							| 3 |  | frgrncvvdeq.nx |  |-  D = ( G NeighbVtx X ) | 
						
							| 4 |  | frgrncvvdeq.ny |  |-  N = ( G NeighbVtx Y ) | 
						
							| 5 |  | frgrncvvdeq.x |  |-  ( ph -> X e. V ) | 
						
							| 6 |  | frgrncvvdeq.y |  |-  ( ph -> Y e. V ) | 
						
							| 7 |  | frgrncvvdeq.ne |  |-  ( ph -> X =/= Y ) | 
						
							| 8 |  | frgrncvvdeq.xy |  |-  ( ph -> Y e/ D ) | 
						
							| 9 |  | frgrncvvdeq.f |  |-  ( ph -> G e. FriendGraph ) | 
						
							| 10 |  | frgrncvvdeq.a |  |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) | 
						
							| 11 | 4 | ineq2i |  |-  ( ( G NeighbVtx x ) i^i N ) = ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) | 
						
							| 12 | 9 | adantr |  |-  ( ( ph /\ x e. D ) -> G e. FriendGraph ) | 
						
							| 13 | 3 | eleq2i |  |-  ( x e. D <-> x e. ( G NeighbVtx X ) ) | 
						
							| 14 | 1 | nbgrisvtx |  |-  ( x e. ( G NeighbVtx X ) -> x e. V ) | 
						
							| 15 | 14 | a1i |  |-  ( ph -> ( x e. ( G NeighbVtx X ) -> x e. V ) ) | 
						
							| 16 | 13 15 | biimtrid |  |-  ( ph -> ( x e. D -> x e. V ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ph /\ x e. D ) -> x e. V ) | 
						
							| 18 | 6 | adantr |  |-  ( ( ph /\ x e. D ) -> Y e. V ) | 
						
							| 19 |  | elnelne2 |  |-  ( ( x e. D /\ Y e/ D ) -> x =/= Y ) | 
						
							| 20 | 8 19 | sylan2 |  |-  ( ( x e. D /\ ph ) -> x =/= Y ) | 
						
							| 21 | 20 | ancoms |  |-  ( ( ph /\ x e. D ) -> x =/= Y ) | 
						
							| 22 | 17 18 21 | 3jca |  |-  ( ( ph /\ x e. D ) -> ( x e. V /\ Y e. V /\ x =/= Y ) ) | 
						
							| 23 | 1 2 | frcond3 |  |-  ( G e. FriendGraph -> ( ( x e. V /\ Y e. V /\ x =/= Y ) -> E. n e. V ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } ) ) | 
						
							| 24 | 12 22 23 | sylc |  |-  ( ( ph /\ x e. D ) -> E. n e. V ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } ) | 
						
							| 25 |  | vex |  |-  n e. _V | 
						
							| 26 |  | elinsn |  |-  ( ( n e. _V /\ ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } ) -> ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) ) | 
						
							| 27 | 25 26 | mpan |  |-  ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } -> ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) ) | 
						
							| 28 |  | frgrusgr |  |-  ( G e. FriendGraph -> G e. USGraph ) | 
						
							| 29 | 2 | nbusgreledg |  |-  ( G e. USGraph -> ( n e. ( G NeighbVtx x ) <-> { n , x } e. E ) ) | 
						
							| 30 |  | prcom |  |-  { n , x } = { x , n } | 
						
							| 31 | 30 | eleq1i |  |-  ( { n , x } e. E <-> { x , n } e. E ) | 
						
							| 32 | 29 31 | bitrdi |  |-  ( G e. USGraph -> ( n e. ( G NeighbVtx x ) <-> { x , n } e. E ) ) | 
						
							| 33 | 32 | biimpd |  |-  ( G e. USGraph -> ( n e. ( G NeighbVtx x ) -> { x , n } e. E ) ) | 
						
							| 34 | 9 28 33 | 3syl |  |-  ( ph -> ( n e. ( G NeighbVtx x ) -> { x , n } e. E ) ) | 
						
							| 35 | 34 | adantr |  |-  ( ( ph /\ x e. D ) -> ( n e. ( G NeighbVtx x ) -> { x , n } e. E ) ) | 
						
							| 36 | 35 | com12 |  |-  ( n e. ( G NeighbVtx x ) -> ( ( ph /\ x e. D ) -> { x , n } e. E ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) -> ( ( ph /\ x e. D ) -> { x , n } e. E ) ) | 
						
							| 38 | 37 | imp |  |-  ( ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) /\ ( ph /\ x e. D ) ) -> { x , n } e. E ) | 
						
							| 39 | 4 | eqcomi |  |-  ( G NeighbVtx Y ) = N | 
						
							| 40 | 39 | eleq2i |  |-  ( n e. ( G NeighbVtx Y ) <-> n e. N ) | 
						
							| 41 | 40 | biimpi |  |-  ( n e. ( G NeighbVtx Y ) -> n e. N ) | 
						
							| 42 | 41 | adantl |  |-  ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) -> n e. N ) | 
						
							| 43 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem2 |  |-  ( ( ph /\ x e. D ) -> E! y e. N { x , y } e. E ) | 
						
							| 44 |  | preq2 |  |-  ( y = n -> { x , y } = { x , n } ) | 
						
							| 45 | 44 | eleq1d |  |-  ( y = n -> ( { x , y } e. E <-> { x , n } e. E ) ) | 
						
							| 46 | 45 | riota2 |  |-  ( ( n e. N /\ E! y e. N { x , y } e. E ) -> ( { x , n } e. E <-> ( iota_ y e. N { x , y } e. E ) = n ) ) | 
						
							| 47 | 42 43 46 | syl2an |  |-  ( ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) /\ ( ph /\ x e. D ) ) -> ( { x , n } e. E <-> ( iota_ y e. N { x , y } e. E ) = n ) ) | 
						
							| 48 | 38 47 | mpbid |  |-  ( ( ( n e. ( G NeighbVtx x ) /\ n e. ( G NeighbVtx Y ) ) /\ ( ph /\ x e. D ) ) -> ( iota_ y e. N { x , y } e. E ) = n ) | 
						
							| 49 | 27 48 | sylan |  |-  ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> ( iota_ y e. N { x , y } e. E ) = n ) | 
						
							| 50 | 49 | eqcomd |  |-  ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> n = ( iota_ y e. N { x , y } e. E ) ) | 
						
							| 51 | 50 | sneqd |  |-  ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> { n } = { ( iota_ y e. N { x , y } e. E ) } ) | 
						
							| 52 |  | eqeq1 |  |-  ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } -> ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } <-> { n } = { ( iota_ y e. N { x , y } e. E ) } ) ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } <-> { n } = { ( iota_ y e. N { x , y } e. E ) } ) ) | 
						
							| 54 | 51 53 | mpbird |  |-  ( ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } /\ ( ph /\ x e. D ) ) -> ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } ) | 
						
							| 55 | 54 | ex |  |-  ( ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } -> ( ( ph /\ x e. D ) -> ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } ) ) | 
						
							| 56 | 55 | rexlimivw |  |-  ( E. n e. V ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { n } -> ( ( ph /\ x e. D ) -> ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } ) ) | 
						
							| 57 | 24 56 | mpcom |  |-  ( ( ph /\ x e. D ) -> ( ( G NeighbVtx x ) i^i ( G NeighbVtx Y ) ) = { ( iota_ y e. N { x , y } e. E ) } ) | 
						
							| 58 | 11 57 | eqtr2id |  |-  ( ( ph /\ x e. D ) -> { ( iota_ y e. N { x , y } e. E ) } = ( ( G NeighbVtx x ) i^i N ) ) |